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Abstract—This study advances the understanding of motion 

sickness (MS) by integrating subjective measures, like the 

simulator sickness questionnaire (SSQ), with objective 

physiological metrics, particularly galvanic skin response 

(GSR), analysed through an Autoencoder Long Short-Term 

Memory (AE-LSTM) model. This model, designed for 

unsupervised anomaly detection, evaluates GSR data to detect 

differences in physiological (GSR) responses to conditions of 

different MS potential (here different weather scenarios in a 

naturalistic VR helicopter simulation). By comparing these 

physiological anomalies with self-reported cybersickness 

scores, our findings highlight the importance of combining 

machine learning-analysed physiological data with subjective 

reports, offering a comprehensive approach to assessing MS in 

different conditions. The transition from clear to stormy 

scenarios revealed marked elevations in MS scores, although 

the model was currently not able to reliably identify scenario-

specific physiological responses that correlate with increased 

MS. 
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I. Introduction 

 
The occurrence of motion sickness (MS) in the real world 

is usually associated with an actual physical motion. 
However, when it is induced by visual stimuli alone without 
any actual motion of the observer, it is known as visually 
induced motion sickness (VIM[1]–[3] Motion sickness can 
manifest in a broad spectrum of symptoms, beginning with 
subtle physiological changes like alterations in skin tone, 
body temperature, and salivation, and progressing to overt 
discomfort, including headaches, nausea, and dizziness. In 
rare cases, it can even escalate to more serious symptoms 
such as vomiting [1], [3]–[7].  

The prevalence of VIMS is reported to be highly variable 
(ranges from 1-95% [8], [9]), influenced by numerous factors 
such as the design of virtual reality (VR) equipment and the 
nature of the visual content and the dynamics of simulated 
self-motion, as well as participant factors. The health 
implications of VIMS are multifaceted, presenting differently 
across various VR platforms and contexts. This variability 

spans a spectrum from video game sickness to simulator 
sickness, cybersickness, and VR sickness, each distinguished 
by the context of use [10] [11].  

Although virtual reality (VR) systems have seen 
substantial enhancements and have been effectively applied 
in various contexts, they have not yet reached the expected 
level of adoption as a consumer-grade technology. The 
introduction of head-mounted displays (HMDs) has brought 
about a specific kind of motion sickness referred to as cyber-
sickness. Contributing factors especially for HMDs are 
functional challenges like latency, where there is a delay 
between a user's actual head movements and the 
corresponding updating of the visuals, poor illumination, 
poor contrast and length of exposure to VR contributing to 
cybersickness [12][13].  

In the study conducted by Irmak et al. [14], there was a 
noticeable variation in galvanic skin response (GSR) in 
relation to motion sickness. Notably, both tonic and phasic 
GSR exhibited substantial increases, showing a clear 
correlation with the severity of motion sickness. Wan et al. 
[15] recorded skin-conductance responses (both phasic and 
tonic) and observed that as the duration of stimuli exposure 
increased, both the subjective ratings of motion sickness and 
skin conductance levels also increased. This makes skin 
conductance a sensitive physiological indicator of motion 
sickness induced by visual stimuli. This research builds upon 
existing knowledge to investigate the relationship between 
galvanic skin response (GSR) and the intensity of motion 
sickness (MS), with a particular emphasis on the role played 
by different environmental factors, such as weather 
conditions.  

The choice of environmental factors, particularly clear 
and stormy weather conditions, for investigation in this study 
is grounded in their pronounced variability and potential to 
significantly alter the visual and physical experiences of VR 
users. Clear weather conditions provide a baseline for 
understanding the normative physiological response to 
motion in an unobstructed environment, offering a control 
scenario against which the effects of more adverse conditions 
can be measured. In contrast, stormy weather introduces 
visual disturbances, such as reduced visibility and dynamic 
visual patterns, along with increased physical turbulence. 
These factors are hypothesized to intensify the sensory 
conflict that contributes to motion sickness, thereby 
amplifying galvanic skin response (GSR) as an indicator of 
physiological arousal and discomfort. By examining these 
distinct scenarios, the study aims to dissect the impact of 
environmental visual and physical stressors on motion 
sickness, providing insights into the mechanisms underlying 
GSR variability in response to motion. This exploration is 
particularly relevant for improving the design and safety of  
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simulation technologies and transport systems, where 
understanding the interplay between  

environmental conditions and motion sickness can lead to 
enhanced user experiences and mitigation strategies. 

 To tackle this objective, we designed a helicopter 
simulation, crafting a range of aerial scenarios with varying 
weather conditions to establish a controlled yet ecologically 
valid environment for the study. This approach was taken to 
evaluate the influence of these elements on GSR as a 
measure for motion sickness [17,18]. 

The study explores the relationship between motion 
sickness (MS) and physiological responses, notably galvanic 
skin response (GSR), driven by the need to mitigate MS's 
adverse effects on the physiological system. This exploration 
is driven by the urgency to mitigate the adverse impacts of 
motion sickness (MS), which include reduced well-being and 
productivity due to discomfort and nausea, posing a 
significant barrier to the effective use of VR in a multitude of 
applications. Recognizing GSR as a measurable indicator of 
MS, our research aims to enable the development of 
strategies to predict and alleviate MS, especially in contexts 
prone to inducing it, such as travel and VR simulations. 
Uncovering these physiological markers is a crucial step 
towards advancing the management and reduction of 
impacts.  

II. Research Materials and Methods 

Prior research in the field has utilised various 
computational models to analyse the physiological 
correlates of motion sickness, with methods ranging from 
simple statistical regressions to more complex neural 
networks. For example, the authors in [19] used collected 
data from 15 participants with a total of 11 tests for each 
user and used FlowNet optical flow algorithm to estimate 
MS level via vection. The correlation coefficient of this 
study was negative and did not reflect a significant 
correlation with the MS score. Ko et al. [20] used a support 
vector machine (SVM) classifier for their learning model. 
EEG data for 6 participants were used to estimate MS level. 
The model achieved an accuracy of 59% - 97%.  The study 

in [21] demonstrates that a deep learning-based approach, 
specifically using an LSTM model, can effectively predict 
VR sickness using postural instability as a measure in users 
navigating immersive virtual environments.  

In this study, we investigate the potential of anomaly 
detection capability of LSTM autoencoder to detect the 
changes in physiological data, in this case GSR, associated 
with different VR scenarios. 

A. Autoencoder-Long Short-Term Memory 

The Long Short-Term Memory (LSTM) model is fully 

equipped to process time series and handle time lags between 

inputs.  It is able to remember values pertaining to any length 

of time stamp [22] by adding a “gate” to the cell.  The LSTM 

architecture is shown in Figure 2.  It can be expressed 

mathematically as follows: 

��  =  ����ℎ ℎ�−1  + ��� ��  +  
�  �,  

�̃�  = tanh��� ̃ℎ ℎ�−1  + �� ̃���  + 
� ̃�, 

��  =  ��−1  + ��  ⊗ �̃� , 

��  =  ����ℎ ℎ� −1  + �����  +  
� �,   

ℎ�  = ��  ⊗  ���ℎ��� �,                (1) 

 
where : input/update gate's activation vector, : input 

vector to the LSTM unit, : hidden state vector, σ: activation 

function, : output gate's activation vector,   and  are the 

encoded and decoded state vectors, while  is elementwise 

(pointwise) product operator. ,   and  are the 

weights, and  is the bias vector. 

The features of LSTM eliminate the need for pre-
determined time windows required by traditional techniques 
to detect changes in a sequence of long-term dependencies.  
It allows the LSTM network to work well on capturing the 
behaviour of time series sequences. This has led to the use of 
LSTM in detecting anomalous sequences in time series, 
which is generally denoted as Anomaly detection (AD) [23]–
[26].  

To realise AD, a machine learning (ML) prediction 
model is trained to recognise normal behaviours.  Given a 
new input, the prediction error generated by the trained ML 
model is utilised to detect abnormal behaviours [23]. AD 
techniques have been used to identify anomalies from time 
series data in many areas, e.g. supply chain management 
(SCM), machinery, and finance. [16].  

A standard auto-encoder consists of two main parts: 
encoder and decoder.  The encoder compresses the data 
samples into short representations and propagates them to a 
latent space.  The decoder neural network then decompresses 
the codes into representations as closely to the original ones 
as possible [27].  The output is compared with the original 
data sample to generate an error estimate [16].  By 
compressing the data samples into smaller representations, 
the auto-encoder is able to capture the most important 
features while reducing the data dimensions. By embedding 
auto-encoders into LSTMs, they can inherit the ability of 
LSTMs to learn and store features over long sequences.  This 
capability makes the resulting method useful for detecting  

Figure1: Clear weather (left) and stormy weather (right) 

 

Figure 2:  A simplified block diagram of an auto-encoder [16] 

 



anomalies in multivariate time series data. Figure 2 
depicts a simplified block diagram of the auto-encoder 
workflow.  

The auto-encoder reconstructs the input vectors  

to become the outputs  such that , 
where and  are the weight and bias vector, respectively, 
while keeping the reconstruction error as minimum as 
possible, therefore setting up a threshold . The error 
magnitude  

is the result of comparing the auto-encoder output with 
the initial data sample, which is then passed to the network 
for the weights to be updated [16]. During the training 
process, the auto-encoder learns to minimise the 
reconstruction error [28], as defined in Eq. 2 

 

   (2) 
 

where : normal training data set, D: vector of D 

different variables) and : output (reconstructed) data set.  

The training process halts when the reconstruction error 
reaches its minimum, signifying that the model has 
optimized its ability to replicate the input data. At this 
juncture, the lowest loss value observed during training is 
earmarked as a benchmark. Any subsequent errors exceeding 
this benchmark are flagged as potential anomalies. This 
calibrated threshold, rooted in the model’s most efficient 
performance, equips the system to identify deviations in new 
data—specifically, abrupt changes in amplitude that diverge 
from established norms. Thus, with the threshold set based 
on minimal loss error, the model stands primed to detect 
anomalous sequences in incoming data. 

To detect the changes of GSR response to the change in 
weather scenarios, we present a system designed for 
unsupervised anomaly detection employing the capabilities 
of LSTM autoencoders. This system addresses a critical gap 

in physiological data analysis, particularly in scenarios where 
labelled anomaly data is scarce or unavailable.  

This critical gap in physiological data analysis, especially 
regarding GSR, lies in the challenge of detecting nuanced 
physiological changes without access to extensive labelled 
datasets for supervised learning. This is particularly 
problematic in contexts like evaluating the impact of varying 
weather scenarios, where specific patterns of anomalies are 
subtle and labelling data for anomalies is often impractical. 
To bridge this gap, we introduce a system utilizing LSTM 
autoencoders for unsupervised anomaly detection. By 
learning the normal patterns of GSR data, our system can 
identify deviations without needing pre-labelled anomaly 
data, thus offering a novel approach to analyse physiological 
responses in conditions where labelled data is scarce. This 
methodology not only circumvents the limitations posed by 
the lack of labelled datasets but also enables a deeper 
understanding of physiological responses to environmental 
changes, marking a significant advancement in the field. Our 
methodology recognizes the unique nature of GSR data, 
acknowledging that it can reflect substantial individual 
variability and is sensitive to differing scenarios/contexts. 
Therefore, our system is uniquely tailored to process and 
analyse data on a participant-specific basis, providing an 
accurate identification of anomalies. 

The model is trained exclusively on 'normal' GSR data 
(Scen1/clear weather in our case) for each participant, 
enabling it to learn and internalise the typical physiological 
patterns exhibited under standard conditions. Post-training, 
the model is tasked with reconstructing both normal and 
presumed 'abnormal' (Scen2/stormy weather) data. 
Anomalies are detected by quantifying the reconstruction 
error, where larger errors signal significant deviations from 
the learned normal patterns, flagging potential anomalies. 

A key benefit of our approach is its adaptability and 
scalability. The system is designed to handle multiple 
participants, acknowledging the inherent variability in human 
physiological responses. Through individualized model 
training, the system effectively accounts for this variability, 
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Figure 3: Comparative analysis of the total sickness score (SSQ total, left) and the GSR values (middle) averaged over the exposure duration, for the 
clear and stormy weather scenarios. Depicted are mean and 95% confidence intervals. Gray dots depict individual participant values, illustrating the 
large between-participant variability in both introspective and physiological data.  Right: linear correlations between the total sickness scores and GSR 
values, separately for each condition.  



ensuring that the detection of anomalies is both precise and 
reliable. During validation, the model is first validated on 
unseen normal data to ascertain its reconstruction accuracy, 
and subsequently on abnormal data to evaluate its anomaly 
detection ability. 

For scalability and adaptability to multiple participants, 
we encapsulated core functionalities into modular functions. 
These include functions for data loading and preprocessing, 
model building and training, and anomaly detection, which 
calculates reconstruction errors to identify anomalies. The 
system iterates over each participant's data, applying these 
functions systematically, thereby maintaining consistency 
across different datasets. 

B. Procedure and Experimental Setup 

The study involved 16 male volunteers, ages ranging 
from 18 to 45. The study was conducted in strict adherence 
to COVID-19 safety protocols, with approval from Deakin 
University's Ethic Committee (reference number: SEBE-
2020-23HEAG). Participants underwent COVID-19 
screening, received a brief explanation of plain language 
statement (PLS) and signed a consent form. Before the 
experiment, participants completed a pre-SSQ (Simulator 
Sickness Questionnaire by Kennedy et al. [29]) to get a 
baseline MS assessment. Participants engaged in a brief, 10-
minute training session, divided equally between flatscreen 
and head-mounted display (HMD) training, to familiarize 
them with the basics of flying and operating the helicopter 
simulator. The experiment included four distinct weather 
scenarios in the simulator in randomised order - clear, 
broken, stormy, and AI-controlled conditions. Each scenario 
lasted up to 7 minutes. However, this study focuses on 
results from the clear and stormy conditions. Figure 1 shows 
screenshots of the clear and weather conditions in Xplane11. 

Participants were assigned flying scenarios in a 
randomized order. Their objective was to pilot the simulator 
in a pattern resembling a number 8 motion. After each 
scenario, participants completed a post-SSQ (Simulator 
Sickness Questionnaire). The galvanic skin response (GSR) 
data were recorded using Equivocal EQ02 life monitor, a 
multi-parameter device which is used to monitor the 
physiological data. 

III. RESULTS AND DISCUSSION 

A. Statistical Analysis 

Pre-SSQ results indicated that none of the participants 
reported discomfort before commencing the experiments, 
ensuring initial conditions were uniform. All individuals 
successfully completed simulations under clear weather 
conditions. However, simulations under stormy conditions 
led to two participants discontinuing due to elevated 
cybersickness.  

The total motion sickness score in this study was 
evaluated using the SSQ by Kennedy et al. [29]. Figure 2 
(left) presents a comparison of the total sickness (TS) scores 
for participants exposed to clear and stormy weather 
scenarios in the helicopter simulator study. Results indicate a 
significant increase in total SSQ scores from the clear 
weather condition (M = 42.25, SD = 40.6) to the stormy 
condition (M = 62.64, SD = 57.04, t(15) = -2.27, p = 0.0386 
. This indicates that participants experienced more severe 
motion sickness symptoms under stormy conditions than in 

clear weather, highlighting the impact of environmental 
variability on motion sickness severity. The data plot also 
illustrates the large between-participant differences in 
experiences sickness in both environments, and how the 
stormy condition yielded the higher sickness ratings.  

Figure 3 (middle) shows a similar plot for participants’ 
GSR values averaged over the duration of each trial. Overall 
the stormy condition resulted in significantly higher GSR 
values (M = 20.15, SD = 12.65) than the clear sky condition 
(M = 17.82, SD = 10.77, t(15) = 2.36, p = 0.0325. However, 
as indicated in Figure 4 (right) there were no significant 
correlations between participants’ mean GSR values and the 
reported motion sickness for either the clear sky condition (p 
= .91) or the stormy condition (p = .49), suggesting that the 
GSR values by themselves are not a reliable indicator of 
experienced motion sickness.  

B. Model Evaluation and Outcome 

Our machine learning model was implemented to capture 
the changes of GSR values with reference to the changes in 
weather conditions. Figure 4 illustrates the reconstruction 
error for one participant as an example. This plot displays the 
reconstruction error for each sequence in the dataset. The red 
line represents the threshold for anomaly detection. 
Sequences that have a reconstruction error above this 
threshold are considered anomalous. The relatively 
consistent occurrence of peaks above the threshold suggests 
that the model can identify sequences that deviate from the 
'normal' pattern it learned during training. These are the 
points of interest that might correspond to anomalous events 
or states in the GSR data as discussed below. 

Figure 5 top plot (normal data) shows the reconstruction 
error over a sequence of data points under normal (clear sky) 
conditions for a representative participant (P16). The 
reconstruction error is generally low, which is expected as 
the model was trained on this type of data. Towards the end 
of the sequence, there is a noticeable increase in error, with 
several peaks that have been highlighted as anomalies (red 
dots). These peaks indicate sequences where the GSR data 
deviated from the learned normal pattern to a degree that 
exceeded the predefined anomaly threshold. It's possible that 
these could be false positives or could indicate subtle 
changes in the physiological state not captured during 
training. It could also indicate that P16 experienced more 
motion sickness towards the end of the trial, as is common 
for extended VR exposures. 

Figure 6 bottom plot (abnormal data) shows the 
reconstruction error for the same participant plotted for what 
is assumed to be data under abnormal (stormy weather) 
conditions. Overall reconstruction error seems slightly 
elevated compared to the normal data as can be expected as 
the model was trained on the normal data only. However, the 
number of detected anomalies seems fairly comparable 
between the normal (clear) and abnormal (stormy) 
conditions. To investigate this further, we compared the 
number of anomalies detected by our model for each 
participant and condition in Figure 5 (left). This analysis 
illustrates how the number of anomalies detected was quite 
similar and not significantly different between the clear sky 
(normal) condition (M = 15.75, SD = 6.30) and stormy 
weather (abnormal) condition (M = 15.44, SD = ,5.29 t(15) 
= -0.22, p = 0.83). Figure 6 (right) illustrates the lack of any 
significant correlation between the number of detected  



 

 

Figure 4:  Reconstruction error distribution with anomaly threshold.  The chart displays the reconstruction error for each sequence of one participant (1 
sequence = 2 sample/sec × 60 sec = 120 samples) in the dataset, with the red horizontal line marking the threshold above which points are classified as 
anomalies. Peaks above the line represent sequences that significantly diverge from the model's learned patterns, indicating potential anomalies. 

 

Figure 5: Testing the model reconstruction error with new data (participant P16's normal (clear) and abnormal (stormy) GSR data) 
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Figure 6: Left: Comparison of the number of anomalies detected by our model per condition, showing mean and 95% confidence intervals, with grey 
dots indicating individual participant values. Right:  linear correlations between the total sickness scores and number of anomalies detected, separately 
for each condition. 

 



anomalies and the reported sickness scores for either the 
clear sky (normal) condition (p = .76) or the stormy 
(abnormal) condition (p = .66), suggesting that the detected 
number of anomalies by themselves are not a reliable 
predictor of experienced motion sickness. 

Further research is needed to better understand the nature 
and potential meaning of these anomalies, potentially with 
domain expertise, to determine their potential significance 
and whether they correspond to true/meaningful 
physiological events or other factors. 

Subsequent analyses may incorporate a multifaceted 
assessment strategy, cross-referencing GSR data with other 
physiological measures such as heart rate variability or EEG. 
Such a multidimensional approach could enhance the 
detection of subtle physiological responses to motion 
sickness.  

that are not apparent through GSR alone. It also opens 
the possibility of discovering biomarkers that are more 
consistently predictive of motion sickness, laying the 
groundwork for a composite physiological profile of VR-
induced discomfort. 

IV. CONCLUSIONS 

Drawing on extensive research into visually induced 
motion sickness (VIMS) and its physiological correlates, this 
study has deployed advanced machine learning techniques to 
probe the potential relationship between galvanic skin 
response (GSR) and varying intensities of motion sickness in 
virtual reality scenarios. Utilizing an LSTM autoencoder, 
renowned for its proficiency in time series analysis and 
anomaly detection, we have developed a system that can 
capture shifts in GSR, and investigated if those might be  
indicative of motion sickness experienced across different 
environmental conditions simulated in a VR helicopter flight. 

Our system's architecture, designed to accommodate the 
individual variability inherent in physiological responses, has 
been pivotal in reliably detecting anomalies. Trained on 
normal GSR data under clear weather conditions, the model 
demonstrated its capability to learn and replicate normal 
physiological patterns. When tasked with reconstructing data 
from both clear and stormy weather scenarios, the model's 
reconstruction errors served as a reliable metric for 
identifying significant deviations from these patterns. 
However, the interpretation of these errors as reliable metrics 
for identifying significant deviations in motion sickness 
requires further validation. 

While the current study did not establish significant 

correlations between the incidence of motion sickness and 

the GSR readings or the LSTM autoencoder's processing of 

GSR data, the autoencoder model nonetheless holds 

potential. It demonstrates an ability to discern patterns 

within the physiological data which, with further research 

and refinement, could lead to more accurate predictors of 

motion sickness. The value of the autoencoder lies in its 

capacity to analyse complex, time-series data and identify 

anomalies that, although not yet statistically correlated with 

self-reported motion sickness, may still be relevant 

indicators of the condition's onset. Future work will aim to 

harness this capability more effectively, perhaps by 

incorporating additional data sources or refining the model's 

architecture, to realize a robust tool for predicting motion 

sickness in virtual environments.  

In future studies, more advanced simulators with novel 

motion cueing algorithms will be utilized for 

experimentation and data collection to evaluate VIMS and 

simulator sickness [30]–[32]. 
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