Qualitative modeling of spatial orientation processes using a logical network of necessary and sufficient conditions.

Bernhard E. Riecke \& 番 Markus von der Heyde

 tial updating" or just " spatial updating") needs to always update our egocentric men-
tal reference rrame of the suround
alignment with
4qualitatively differ-
ent aspectio ospatial
orientation: orientation
4 underlying spatial
orientation pro-
orientation pro
cesses:
alignment with the physical surround.
We distinguished between four qualitatively different aspects or properties of spatial
orientation processes: adapatable, quick \& intutitive acururate \& precise and orientation processes: adaptable, quick \& intuitive, accurate \& precise, and
abstract strategies. These different aspects of spatial behavior seem to depend logi abstract strategies. These dififerent aspects of spatial behavior seem todepend loge-
cally ond differentunderlying spatial orientation processses and datatastucuctures. We categorized those processes into cognition (abstract mental reasoning), piloting (land
mark-based navigation), continuous spatial updating and instantaneous spatial mark-based navigation), continuous spatial updatitig and instantaneous spatial
updating. The complete framework is resented in i ingur 3 ofr refenece. Insted o
trying to explain the whole framework,

- Continuous vs. Instantaneous Spatial Updating
"Continuous spatial
updating" for incre-
nental transformatina of eogucontric re
lence frame "Instantaneous sp
ial updating" for tial updating"
automatic reorientation of egocen
tric reference frame

Continuous spatial updating" refers to the largely automated and reflex-like proces tinuous motion mues. Continuous spatial updatame is duased self-motions based on con tinuuus motion cues. Continuous spatial updating is based on the integration of the per
ceived ego-motion, whereas instantaneous spatial updating is based on object and
 in the moment of waking up after having fallen asleep on a bus: As soon as we look ou
of the ewindow and recocgnize the outside scene, we are automatically re-anchored to of the window and recognize the outside scene, we are automatically re-anchored to
that reference frame. That is, we inmediately know where we are without any con-
scious effort and w without being able to suppress that re-anchoring (instantaneous spascious effort and without being able to to suppress know where we-anchoring (instantaneous spa-
tial updating of of our egocentric reference frame.

- Continuous vs. Instantaneous Spatial Updating

At least one spatial updating process is

required for
quick intuitive quick intuititve spa
tial orientation
Only instatataneous spatial updating
allows for re-

orventat | $\begin{array}{l}\text { allows for re } \\ \text { orientation }\end{array}$ |
| :--- | Embedding these two spatial updating processes

into a framework of logical connections allows to
clearly disambiguate between them: Either of these clearly disambiguate between them: Either of these
processes may enalle ((e.e., is a oogical prereuxisite
for) पuick \& innuitive spatial orientation (see Figure 3). Only instataneous spatial updating, however,
allows for accurate \& precisis spatal orientation,
as allows for accurate \& precise spatial orientation, as
it it based on the locailiziton and identitication of
landmarks embedded into a consistent scene. hhis has specifici implication
tested and controlled.
First test of the
model were success ${ }_{c}^{\text {model }}$

Distinguishing Distinguns continguous
bnd instantaneous and instantaneous
spatial updating
proved useful

- Conclusions Benefits of the
model: Provides a coher-
ent representation Helps to structure
scientific reasoning Can be used to gen
crate testable preerate testala
dicions Pinpoints potential
causes of spatial orientation prob-
lems (in VR in patlems (in)
ticular)

