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1   Introduction 
Embodied self-motion illusions (“vection”) have long 

fascinated both researchers and laypeople. With the 
increasing quality and affordability of immersive virtual 
reality (VR) and tele-operation/tele-robotics interfaces, there 
is also increasing interest in providing compelling 
sensations of self-motions to create more life-like and 
convincing experiences [4, 13, 21]. Whereas most research 
on self-motion perception focuses on visual and vestibular 
contributions, auditory input can also play a relevant role. 
Here, we will provide an overview of research indicating 
how spatialized sound (moving sound fields) can both 
induce self-motion illusions in blindfolded listeners and 
enhance self-motion illusions induced by other modalities.  

2   Auditory vection 
Although vection research has traditionally focused on self-
motion illusions induced by moving visual cues, it has been 
known for more than a century that blindfolded stationary 
listeners can also experience illusory sensations of self-
motion (auditory vection) when listening to moving sound 
sources [23, 24]. Visually-induced vection can be 
experienced by virtually everybody and can be compelling 
to a point where observers reportedly cannot distinguish it 
from physical self-motion [1, 2, 11]. Yet, auditory vection 
tends to be much weaker and is only reported in 20-80% of 
blindfolded listeners [25], which might explain why it has 
received less attention in research and applications. Similar 
to visually-induced vection, auditory vection can be 
perceived for both rotational self-motion (e.g., circular 
vection around the earth-vertical axis), and for translational 
self-motions (linear vection) such as forward/backward 
motions.  
Various stimulus characteristics have been shown to 
enhance auditory vection, resulting in earlier vection onset 
and increased vection intensity or convincingness ratings. 
Such vection-facilitating factors include increasing the 
number of moving sound sources [19, 27] and increasing the 
velocity of moving sound sources [7, 19, 27], although there 
seems to be an optimal stimulus velocity (around 60°/s for 
yaw circular vection) beyond which faster stimulus motion 
does not further enhance vection [5, 7]. While a minimum 
quality of sound spatialization is necessary to induce 
auditory vection, increasing sound spatialization or 
rendering quality further by using individualized (as 
compared to generic) head-related transfer functions or 
binaural recordings does not necessarily enhance vection 
further [12, 27]. 

Besides physical stimulus characteristics, the meaning and 
interpretation of the moving sound sources can also matter. 
For example, sound sources associated with stationary 
“acoustic landmarks” such as church bells or fountain 
sounds were shown to be more effective in inducing 
auditory vection than sound sources associated with moving 
objects (e.g., vehicle sounds) or neutral sounds such as pink 
noise [8, 19, 26, 28]. Even a non-spatialized sound can 
induce auditory vection if it is perceived to have an inherent 
motion direction: Blindfolded listening to an ascending 
Shepard-Risset Glissando (i.e., a continuously rising pitch) 
resulted predominately in upward (elevator) vection, while 
descending glissandos elicited downwards vection [9]. 
One’s own belief and perception of whether or not actual 
self-motion is possible can also modulate auditory vection 
[12]; it is likely one of the reasons why auditory vection 
researchers often seat listeners on rotation platforms, 
movement carts, or other platforms, suggesting that actual 
self-motion might be possible.   

3   Multi-modal contributions of moving 
spatialized sound sources 
Despite the fact that visual cues are typically much more 
effective in inducing vection than auditory cues, spatialized 
auditory cues that move in sync with a rotating visual 
stimulus can nevertheless be used to significantly enhance 
visually-induced circular vection [5, 6, 16, 20]. Similarly, 
adding rotating sound sources can also enhance 
“biomechanical” circular vection induced by blindfolded 
listeners stepping along a rotating floor platform above 
which they are seated stationary [17, 18]. Conversely, 
listening to stationary spatialized sound can reduce 
biomechanical vection [18]. That is, spatialized sound can 
both enhance circular vection induced by another modality 
(if consistent with that modality) and interfere with it (if 
inconsistent).  

4   Multi-modal contributions of non-
spatialized sounds 
Even if auditory cues are not spatialized, they can under 
certain conditions enhance visually-induced vection if they 
metaphorically match the visually-presented self-motion. 
For example, non-spatialized sounds increasing or 
decreasing in pitch facilitated visually-induced upward and 
downward (elevator) vection, respectively, but did not affect 
visually-induced vection in other motion directions [22].  
However, sound decreasing in volume (as if moving away) 
showed no clear effect on visually-induced vection, even 
though sound increasing in volume (as if moving closer) 
facilitated visually-induced forward vection [22]. Note that * ber1@sfu.ca 

 



 

such metaphorical or higher-level/cognitive contributions 
might be prone to experimental demand characteristics as 
discussed in more detail in [10, 15]. 

5   Conclusions 
Although auditory cues alone provide a much less 
compelling self-motion sensation than visual cues or 
biomechanical cues (from walking on a circular treadmill), 
they can significantly enhance vection induced by other 
modalities as well as enhance presence and immersion in 
virtual environments [3, 14, 16, 27]. Furthermore, they can 
provide omnidirectional cues beyond the limitation of the 
visual field of view or visual occlusion. This makes spatial 
sound a promising candidate for further enhancing 
numerous self-motion simulation applications ranging from 
immersive virtual reality to entertainment, movies, and tele-
presence/tele-robotics; All the more so because high quality 
spatialized sound can be provided at relatively low cost, 
using either multi-speaker setups or headphones with HRTF 
convolution or binaural recordings. In fact, we posit that 
auditory virtual reality might be the best (and only true) 
virtual reality we can currently provide. High-quality sound 
renderings or recordings can not only be indistinguishable 
from real-world stimuli, but can also be provided by a 
“transparent interface”. That is, while we tend to be aware 
we are looking at a display presenting visual VR cues, we 
can easily be unaware of the sound-producing device. In this 
sense, the ultimate VR system might not be visual, but 
auditory.   
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