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ABSTRACT 
This research aims to investigate if using a more embodied 
interface that includes motion cueing can facilitate spatial 
updating compared to a more traditional non-embodied interface. 
The ultimate goal is to create a simple, elegant, and effective self-
motion control interface. Using a pointing task, we quantify 
spatial updating in terms of mean pointing error to determine how 
two modes of locomotion compare: user powered motion cueing 
(use your body to swivel and tilt a joystick-like interface) and no-
motion cueing (traditional joystick). Because the user-powered 
chair is a more embodied interface providing some minimal 
motion cueing, we hypothesized it should more effectively 
support spatial updating and, thus, increase task performance. 
Results showed, however, the user-powered chair did not 
significantly improve mean pointing performance in a virtual 
spatial orientation task (i.e., knowing where users are looking in 
the VE). Exit interviews revealed the control mechanism for the 
user-powered chair was not as accurate or easy to use as the 
joystick, although many felt more immersed. We discuss how user 
feedback can guide the design of more effective user-powered 
motion cueing to overcome usability issues and realize benefits of 
motion cueing. 

Categories and Subject Descriptors 
H.5.1 [Information interfaces and presentation]: Multimedia 
Information Systems - Artificial, augmented, and virtual realities 

Keywords 
Motion cueing; active locomotion; spatial updating; virtual 
reality; virtual locomotion 

1. INTRODUCTION 
Knowing where we are in a real environment is easy to determine 
and often automatic. Even when moving short distances with 
closed eyes, we can remain aware of where different objects are in 
the surrounding environment. In the case of virtual environments 
(VE), however, people often become lost and disoriented more 
easily. Why the discrepancy? And, how can we make navigation 
through VEs more effective, thus enabling real-world-like 
performance and ease-of-orientation?  

Many researchers believe sensory cues from physical locomotion, 
such as proprioceptive and vestibular cues, are required to enable 

spatial updating - the largely automatized cognitive process that 
computes the spatial relationship between a person and their 
surrounding environment as they move based on perceptual 
information about their own movements [8,13,15,18]. 
Disorientation often causes unhappiness, anxiety, and discomfort 
[6]. And, this ultimately results in reduced usefulness, 
performance, and user acceptance. Being able to successfully 
orient in VR seems to be essential to completing many tasks, and 
it appears to be important to minimize sensory conflict to reduce 
negative side effects. Even though photorealistic immersive 
stimuli can under certain conditions be sufficient to enable 
automatic spatial updating when the visual scenery contains well-
known landmarks [12], many still fail to update visually simulated 
self-motions [8]. A large body of literature (see [14] for review) 
has shown the availability of body-based information during 
movement in VR enables a better sense of direction compared to 
only visual information. That is, small physical motions seem to 
trigger automatic spatial updating and allow participants to more 
easily navigate in VR. Researchers have found using body 
rotations can lead to performance improvements in a navigational 
task compared to visual-only rotations [5,8]. There appears to be a 
disagreement in the literature as to what the minimum 
requirements are to enable spatial updating.  

One factor to improve spatial updating is embodied, active 
locomotion (i.e., where users use their own body to move around). 
Motion cueing is an approach that simulates proprioceptive and 
vestibular cues as closely as possible when walking is not 
feasible. Smaller spaces often have constraints that do not allow 
1:1 motion, so cheating the senses intelligibly is important in 
enabling the feeling of moving when actually stationary. Research 
has found motion cueing in VR can provide means of increasing 
self-motion or vection [7] (i.e., feeling like you are moving when 
you are actually not). Similar benefits can be gained using a 
modified force-feedback manual wheelchair [10] or gaming chair 
where participants control virtual locomotion by leaning into the 
direction they want to travel [1,11]. Studies of virtual and real 
travel have shown positive effects of motion cues on spatial 
orientation [8]. 

Motion cueing has been frequently used in industry for driving or 
flight simulation [2,16]. And, user-powered motion cueing has 
been shown to facilitate visually-induced vection [4,10,11]. Yet, it 
has not been determined if motion cueing can also help induce 
automatic spatial updating, ultimately giving the participant a 
better and more intuitive sense of orientation in the VE. One 
ecologically valid spatial updating measure is a pointing task, 
where participants travel along a pre-determined trajectory and 
point to previously-seen objects [8,18], and will be used in this 
study. We assess spatial updating because participants’ mental 
spatial representation will have to be already automatically 
updated when they arrive at a new location or orientation in order 
to give a fast, intuitive, and accurate response.  
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3. RESULTS 

3.1 Mean Absolute Pointing Error  
A significant main effect for interface was found, F(1, 121) = 
17.260, p < .001, ηp

2 = .125, indicating the joystick interface (M = 
66.66, SE = 2.84) resulted in a lower mean absolute pointing error 
compared to NaviChair (M = 80.65, SE = 2.59). The effect size 
ηp

2 is medium showing that the effect of interface accounts for 
12.5% of the variance in mean absolute pointing error. This main 
effect was qualified by a significant interaction interface*gender, 
F(1, 121) = 4.969, p = .028, ηp

2 = .028, indicating that the effect 
of interface was stronger for males than females (cf. 3). That is, 
females had a lower mean absolute error with joystick interface 
(M = 74.42, SE = 3.81) compared to NaviChair (M = 80.90, SE = 
3.47), and males had a lower mean absolute error with joystick 
interface (M = 58.91, SE = 4.21) compared to NaviChair (M = 
80.39, SE = 3.83). Location showed a significant main effect, F(4, 
121) = 12.138, p < .001, ηp

2 = .286, indicating that mean absolute 
pointing error was significantly different depending on the which 
object location the observer was at (cf. 3). Post hoc tests found 
location 1 had significantly lower mean absolute error than 
locations 2 (p < .001), 3 (p < .001) and 4 (p = .005), and location 2 
had significantly lower mean absolute error than locations 4 (p = 
.035) and 5 (p = .003). All other effects, main effects and 
interactions, were non-significant.  

3.2 Exit Interview 
The majority of participants (21 out of 30) preferred the joystick 
interface. When asked why they preferred the joystick interface, 
many participants reported the joystick feeling more accurate, 
more in control, more familiar to use, mapped proportionally to 
the movement in the VE, and allowed some to use it as a strategy 
to remain oriented. Participants who preferred the joystick 
interface reported NaviChair was uncomfortable to use because of 
height issues or slipping off the chair, the controls were unfamiliar 
and hard to learn even after the training phase, NaviChair took a 
lot more concentration to remain balanced and control their 
movements, and sensitivity was either too much or too little 
depending on the participant. There were some participants who 
found NaviChair to be a more fun and interesting experience, 
though they ultimately preferred the joystick for familiarity 
reasons. A minority of participants (9 out of 30) preferred 
NaviChair for several reasons. Participants reported feeling more 
engaged with the VE, more oriented, and less motion sick with 
NaviChair. The main reason participants who preferred NaviChair 
did not like the joystick was because they felt the joystick was not 
as immersive. These participants felt as if they were actually 
moving through the VE with their own bodies, rather than looking 
at a screen and moving an avatar around.  

4. DISCUSSION AND CONCLUSIONS 
Contrary to our predictions, mean absolute pointing error (cf. 3) 
seems to indicate user powered motion cueing with NaviChair 
does not help orient participants in a VE, at least for the current 
methods used. Results show there are different factors having an 
influence on pointing performance. The interface*gender 
interaction for mean absolute error shows females on average 
seem to be worse than males at pointing to previously seen objects 
in a VE. This result is in keeping with previous research that 
found males exhibit better way finding performance than females 
(for a review see [3]). However, males were only significantly 
better than females with the joystick interface. Our result of the 
gender effect is inconsistent with a previous study, which found 
males benefitted from using physical rotations versus visual only 

rotations where females did not [5]. Our result of females having 
higher pointing error with the joystick interface compared to 
males is consistent with females using landmarks (not present in 
our experimental task) when navigating, and their performance 
decreases when none are present [9]. Additionally, Waller [17] 
suggests underlying individual differences in cognitive spatial 
abilities co-related with gender may explain gender gaps in 
navigation performance. And Coluccia and Louse [3] hypothesize, 
based on their literature review, that gender differences in 
orientation emerge only when tasks require a high load of Visuo-
Spatial Working Memory. Here, males would show better 
orientation performance because of their larger Visuo-Spatial 
Working Memory span.  

This study extends findings on the advantages and disadvantages 
of user-powered motion cueing for different interfaces including a 
Gyroxus gaming chair [11], a wheel-chair motion model [10], and 
the ChairIO gaming interface [1]. In Riecke and Feuereissen’s 
study [11], active control reduced vection occurrence and 
increased vection onset latencies. Similarly, our study used active 
control for both NaviChair and joystick interfaces, so the effects 
of user powered motion cueing may be diminished. It remains to 
be investigated why and under what conditions active control 
reduces vection and spatial orientation performance. Moreover, 
our qualitative results are consistent with Riecke and 
Feuereissen’s who also found that the usability and control issues 
of the gaming chair might have counteracted the benefit of motion 
cueing. Based on the insights gained from the current study and 
prior research (e.g., [1,4,5,11,14,15]), we are planning to study 
how these usability and control issues could be addressed.  

Riecke [10] found that a simple locomotion paradigm like a 
wheelchair with user powered minimal motion cueing decreased 
vection onset latency and increased convincingness and vection 
intensity. While NaviChair did not help with pointing 
performance, participants did report in the qualitative exit 
interview that they felt NaviChair to be more immersive and 
allowed them to feel more a part of the virtual space. So, in terms 
of convincingness, NaviChair seems to be on the right path 
though its design needs improvement. Finally, Beckhaus and 
colleagues [1] designed a similar chair, called ChairIO, as an input 
device for gaming. They found this interface gives a novel 
experience for gamers and helped beginners play immediately. 
Extending these findings, we too found that participants who 
reported having high 3D game experience also found NaviChair 

Figure 3: Mean absolute pointing error (degrees) as a function
of location (left) for both females (top) and males (bottom), and
gender and interface type (right) with 95% CIs. 
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to be a unique experience.   

Exit interviews revealed many participants felt more immersed 
with NaviChair, though they reported better control and accuracy 
with the joystick. The control mechanism itself could be a 
contributing factor for why we found the joystick resulted in 
better pointing performance. NaviChair may have increased path 
integration errors and cognitive load and, thus, contributed to a 
worse pointing performance. For example, the need to actively 
control NaviChair that participants were not familiar with could 
have indirectly reduced attention to the visual stimulus or changed 
their viewing and fixation patterns, thus decreasing orientation. 
Alternatively, participants could have been fully focused on 
controlling and balancing NaviChair to pay sufficient attention to 
where they were going, thus increasing both path integration and 
spatial updating errors. It is feasible NaviChair facilitated 
automatic spatial updating, in the sense that it was relatively 
intuitive to remain oriented, but accumulating path integration 
errors counteracted such potential benefits.  

There are several limitations in this study. First, participants are 
sitting down in both conditions, though they seem to be walking 
like the avatar in the VE, giving an obvious mismatch between 
what is real and what is virtual. Second, many of the participants 
reported in the exit interview they were already very familiar with 
the joystick, often for gaming, which may bias participants to do 
better with that mode of locomotion. Third, the design of 
NaviChair is still in its infancy. Adjustments and testing are an 
ongoing process in determining the ideal control parameters for 
the majority of users. Where the traditional joystick has well 
established control mechanisms, NaviChair still needs 
improvement. Ideally, the next step in this study will be to refine 
the controls of NaviChair to make controlling movement easier 
and fine-tuned to suit the user’s needs.  

Many factors including gender, location, and interface have an 
influence on a virtual pointing task. Our results suggest the 
presence or absence of user powered motion cueing may play a 
role in one’s sense of orientation in VEs. When designing virtual 
systems, these individual factors should be kept in mind. 
Moreover, it seems user powered motion cueing with NaviChair 
in its current form may not be sufficient in helping people remain 
oriented in VEs. Exit interviews revealed NaviChair was difficult 
to control and make accurate movements, suggesting the control 
mechanism itself may have contributed to lower pointing 
performance. We aim to adjust NaviChair in order to make it as 
easy to control as a normal joystick. 
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