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Figure 1. Left: A participant wearing HTC VIVE HMD and the EMOTIV Insight EEG BCI. Right: Visual stimuli of the virtual 

environment designed to provide optic flow but eliminate all visual landmarks. 

Abstract 
This study shows how brain sensing can offer insight to the 
evaluation of human spatial orientation in virtual reality (VR) 
and establish a role for electroencephalogram (EEG) in virtual 
navigation. Research suggests that the evaluation of spatial 
orientation in VR benefits by going beyond performance 
measures or questionnaires to measurements of the user’s 
cognitive state. While EEG has emerged as a practical brain 
sensing technology in cognitive research, spatial orientation 
tasks often rely on multiple factors (e.g., reference frame used, 
ability to update simulated rotation, and/or left-right confusion) 
which may be inaccessible to this measurement. EEG has been 
shown to correlate with human spatial orientation in previous 
research. In this paper, we use convolutional neural network 
(CNN), an advanced technique in machine learning, to train a 
detection model that can identify moments in which VR users 
experienced some increase in spatial orientation demands in 
real-time. Our results demonstrate that we can indeed use 
machine learning technique to detect such cognitive state of 
increasing spatial orientation demands in virtual reality research 
with 96% accurate on average.  

CCS Concepts • Human-centered computing → Virtual 
reality; • Human-centered computing → Systems and tools for 
interaction design 

Keywords Convolutional Neural Network, Detection Model, 
EEG, Machine Learning, Spatial Orientation, Virtual Reality 

1 Introduction 
The quantitative evaluation of psychological outcomes has been 
a significant goal of both the cognitive science and human-

computer interaction (HCI) / VR community for decades. Many 
quantitative and qualitative approaches have been proposed to 
peek into the user’s cognitive processes during virtual 
experiences. Nevertheless, there are potential confounds to 
evaluate psychological outcome without directly monitoring the 
brain’s cognitive processes. Evaluations of basic tasks may have 
low external validity to the real-life condition. Psychophysical 
research often uses artificial or abstract stimuli and situations 
tend to be not appealing to the participants, which might reduce 
real-world transferability of the results [24, 25]. Moreover, 
previous psychology research suggests that evaluating 
performance without also assessing workload may lead to 
incorrect conclusions about the cognitive efficiency of an 
interface [13, 27, 41]. Finally, cognitive states can change even 
when performance remains stable. In other words, performance 
metrics may not always accurately reflect underlying cognitive 
processes [7, 39]. 
Consequently, there have been many approaches proposed in 
objective methods to evaluate cognitive processes in HCI 
research [14, 33]. In particular, EEG has been widely used as a 
practical brain sensing technology in HCI as it is relatively 
affordable and easy to use. It has been proven to be effective in 
measuring brain cognitive load [11]. Another study also reports 
the correlation between EEG and insightful problem solving [35]. 
In cognitive science, spatial orientation refers to an ability of 
most animals including human that allows them to navigate 
through their immediate environment and interacting with it 
effectively with little cognitive effort. This ability is essential for 
most animals' daily activities such as finding food and homing. 
In VR, due to multiple factors such as sensory conflicts and 
latency, human spatial orientation degrades significantly. 
Previous research has shown people take significantly longer 
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time keeping track of their positions when traveling in VR than 
they do in the real world [40]. There are a variety of factors have 
been shown to affect human spatial updating process in virtual 
environments (e.g., [23, 26, 28]), such as left-right confusion [10, 
29] and inability to update visually simulated rotations [17, 40]. 
In order to measure the effectiveness of spatial orientation, 
previous studies used multiple experimental tasks that require 
maintaining spatial awareness in VR such as rapid pointing (e.g., 
[17, 32]), point-to-origin (e.g., [10, 16, 17, 29]) or navigational 
search (e.g., [19, 26, 30, 34]). However, these tasks, as discussed 
above, often have low external validity. On the other hand, EEG 
or theta-band frequency oscillation has been shown to be 
correlated with human spatial orientation in multiple contexts 
(e.g., [4, 9]). For example, striking episodes of high-amplitude 
theta band oscillations has been revealed during virtual maze 
navigation [15]. The association between theta oscillation and 
the performance of navigational tasks in humans is also 
suggested in another study [1]. 
In this work, we test the viability of using EEG to observe how 
spatial orientation demands modifies brain activity in virtual 
navigation. We conducted two experiments to (1) examine how 
participants process spatial orientation demand in their brains, 
and (2) determine the efficacy of using machine learning, more 
specifically convolutional neural network (CNN), as a technique 
for detecting spatial orientation demands in virtual navigation. 
To investigate this, we first conducted a controlled experiment 
with a two-level independent variable of spatial cognition: 
without or with a spatial orientation demand in the form of a 
point-to-origin task. For the first condition, participants only 
passively observed a simulated excursion in VR. For the latter 
condition, in addition to a simulated excursion, participants were 
asked to do a point-to-origin task that is to keep track of their 
translation and rotation so that at the end of the trajectory, they 
can point back to the origin which is the location where they 
started the navigation. The dependent variable is the power of 
theta-band oscillation extracted from the collected EEG data. 
Secondly, we proposed a CNN architecture and used cross-
validation to evaluate the efficacy of this network in detecting 
spatial orientation demand during virtual navigation. Based on 
our results, we make two contributions: 
• Our findings suggest that EEG can be used to monitor 

differences in brain activity that derive from spatial 
orientation demands during virtual navigation. We find 
that the average power of theta-band oscillation differs 
significantly during navigation with/without spatial 
orientation demands. That is to say changes in theta 
band rhythms correlated with the presence of spatial 
orientation demands. 

• We propose that such machine learning technique as 
CNN can be effectively used to detect spatial orientation 
demands in human brain activity. The proposed network 
architecture can effectively detect orientation demand 
with average accuracy of 96%. This result also suggested 
that advanced AI techniques can be adopted in analyzing 
different kind of psychophysical data in order to enhance 
the objectivity in measuring psychological outcomes in 
HCI research. 

2 Method 

2.1 Stimuli and Apparatus 
Virtual Environment 
Participants wore a head-mounted display (HMD) displaying a 
virtual world. As depicted in Fig. 1, this virtual environment 
consists of a star field of randomly distributed white spheres in a 
black environment, which was designed to provide strong optic 
flow but no landmarks or any other orientation cue. This optic 
flow is the only visual cue that participants can use to keep track 
of their position and rotation during the virtual navigation. 
There is a large body of literature showing that optic flow can 
induce a compelling illusion of self- motion (vection) [6, 12, 31, 
37]. In addition, previous studies have also shown that humans 
can extract turning angles and travel distances from pure optic 
flow information [5, 20, 37, 38]. 

Visualization 
HTC Vive HMD has been used to binocularly present the virtual 
environment to participants in this experiment. The HTC Vive 
provides a per-eye resolution of 1080 x 1200 pixel and a 
binocular FOV of 110° diagonally. Stimuli were generated in real 
time at 90Hz. 

Tracking and Interaction 
The head tracking embedded in the HMD was enabled. The 
wireless controller going with the HMD was also used as a 
means for pointing to the origin at the end of each trajectory. 

Brain Computer Interface (BCI) 
EEG data were collected using a five-channel dry electrode 
headset (EMOTIV Insight). Five electrodes were located at 
standard coordinates: AF3, AF4, T7, T8, O1. The data measured is 
oversampled at 2048Hz/channel and this is filtered to remove all 
traces of environmental electromagnetic interference and then 
down sampled to 128Hz. 

Task 
Initially, participants were positioned in the middle of a star 
field. They had time to look around and get familiar with the 
virtual world. When participants were ready, they were asked to 
sit still on a stable chair. After a few seconds, the navigation 
would begin. Participants were passively navigated through a 
predefined trajectory including straight and curvy segments. 
There were five trajectories and their order was randomized for 
each condition. There is a slight difference between two 
conditions: 
• Normal: In baseline condition, participants were asked to 

simply watch the navigation. 
• Spatial Updating / Orientation Demanding: In the spatial 

orientation demanding condition, participants were 
asked to keep track on their position and rotation 
changes so that at the end of the trajectory, they can 
point back to the origin of the current navigation using 
the HTC Vive controller. 
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2.2 Procedure 
Participants began by reading written instructions explaining the 
task as well as the use of the equipment. Each participant 
completed one trial in the training section to get familiar with 
the interface and five trials for each of the two variations of the 
task. Each trial lasted approximately 30 seconds. Participants had 
15-second breaks on average between trials. 

2.3 Experimental Design 
This is a repeated-measures experimental design where the 
independent variable is the variation of the task (2 levels: normal 
and spatial orientation demanding). Therefore, every participant 
took part in all two conditions, in counter-balanced order. 
Oscillatory responses are the most common and well-studied 
characteristics in EEG [2, 21]. In this study, we hence measured 
theta-band oscillation power as the dependent variable. Data 
were then analyzed using repeated-measures ANOVA and used 
as dataset for training and testing CNN-based detection model. 

2.4 Dataset 
In this study, the EEG dataset was collected during our own 
spatial updating experiment using a EMOTIV Insight BCI. The 
original 20 30-second datasets (2 participants x 2 conditions x 5 
trials) was pre-processed to filter out noises and normalize 
lengths between trials. Pre-processed datasets included twelve 
20-second datasets (2 participants x 2 conditions x 3 trials). At 
this step, for each condition we had 120 records per participants 
(2 Hz x 20 seconds x 3 trials) and each record included 4 
channels (AF3, T7, T8, AF4). Before entering CNN, the data was 
reconstructed using a window size of 20 (relevant to 10 seconds). 
Fig. 3 illustrates this step on how data were constructed to 80-
element vectors. 

 
Figure 3. Data preprocessing and formatting using window size 
of 20 

2.5 Convolutional Neural Network 
CNN is a neural network which consists of a multilayer 
perceptron (MLP), and which possesses a special topology 
containing multiple hidden layers. Our CNN model topology is 
illustrated in Fig. 2. This CNN has five layers, including 
convolutional, rectified linear units (ReLU), normalization, max 
pooling, and fully connected layers in order: 
• The input data has a structure of 80 x 1 (as described 

above). The convolutional layer convolves this input data 
matrix via five 4 x 1 filters with stride of five and outputs 
the filtered data map. The structures of these filters were 
learned by back propagation during the training procedure. 

• The filtered data maps whose structure of 39 x 5, are then 
entered ReLU, cross-channel normalization, and max 
pooling layers. This max pooling layer used a filter with 
size of five and stride of two. After this step, the featured 
map has the size of 18 x 5. 

• Finally, the features obtained are transferred to the fully 
connected layer. Ultimate classification is based on these 
features. Softmax function is used as the activation 
function. 

 
Figure 4. Theta-band oscillation power of one participant in 
normal (left) and spatial orientation demanding (right) 
conditions. 
 

Figure 2. The proposed topology of five-layer CNN 



SAVR 2017, October 2017, Vancouver, BC Canada Thinh Nguyen-Vo, Steve DiPaola, Bernhard E. Riecke 
 

4 

 

3 Results 
Visual inspection of the theta-band oscillation revealed striking 
changing patterns between the two conditions of spatial 
orientation demands. Fig. 4 shows an example of the differences 
in theta-band rhythm. While the signals seemed to be more 
stable in baseline condition, they fluctuated significantly 
stronger in orientation demanding condition. 
Theta-band oscillation power is summarized in Fig. 5 and was 
analyzed using repeated-measures ANOVA. Our result 
confirmed previous findings that spatial orientation demands 
significantly change theta-band oscillation power during 
virtual navigation. ANOVA revealed a significant effect of 
spatial orientation on EEG signal, F(1, 463) = 271.44, p < .0001. 

 
Figure 5. Mean data of theta-band oscillation power (Left: cross- 
channel; Right: individual channels). Error bars indicate 
confidence intervals (CI = .95) 
Cross-validation on three-fold datasets with two-fold training 
and one-fold testing showed the efficacy of the proposed CNN 
with the average accuracy of 96% for inter-subject condition (SD 
= 8.57%) and 63% for intra-subject condition (SD = 8.76%). Intra-
subject is the condition where the model was built on data from 
a single participant (using 2 folds), then used the trained model 
to test on himself/herself (using the remaining fold). The inter-
subject is where we use data from all participants together to 
train and test. This result suggests that CNN is robust for 
spatial orientation demands detection in inter-subject 
condition. 

4 Discussion and Conclusion 
There is a large body of literature demonstrating the relationship 
between theta oscillation and brain processes underlying mental 
workload, working memory [18, 22, 36] or spatial orientation [1, 
15]. The current study confirmed previous findings about the 
correlation between theta oscillation and human spatial 
orientation in the context of a point-to-origin task in VR. We 
have demonstrated that EEG is a viable technology for 
investigating the impact of spatial orientation demand on a 
person’s cognition processes. Using the statistical comparison, 
we found that increasing powers of theta oscillation correlated 
with the virtual navigation that requires additional spatial 
orientation demands. 

The proposed method of applying machine learning, based on 
orientation state EEG using CNN, may represent an appropriate 
technique to develop EEG-based biometric systems which supply 

good detection performance. This form of biometrics, in addition 
to providing a higher level of objective measure in spatial 
orientation research, would have other useful applications, e.g. 
evaluation metric or interactive inputs for virtual reality 
application. 

The high accuracy for intra-subject (96%) and low (63%) for 
inter-subject condition also confirmed previous findings about 
the differences in EEG between individuals. Berhout and Walter 
observed that EEG might provide different signals between 
individuals, as pertains to the anatomical and functional traits of 
their brains [3]. Furthermore, an individual’s EEG has been 
shown to be both stable and specific [8]. In other words, EEG 
tend to yield small intra-personal differentiation and large inter- 
personal differentiation, which is why it is easier to build custom 
detection model for each person than to build a general detection 
model that can be used for everyone. 

In the future, this CNN-based system should be tested on a 
larger population, with different network topologies and 
configurations, providing further confirmation of the application 
of the system as well as the robustness of machine learning 
techniques on EEG analysis. We believe that EEG will become 
more practical in the near future and will likely be embedded in 
future HMDs, and that recognizing such cognitive states as 
spatial cognition or motion using commercial-grade BCI will 
become much more widespread. For that reason, this is an open 
direction for future research to continue exploring the potential 
of EEG for cognitive state detection and recognition. 
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