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Abstract
Vection is typically defined as the embodied illusion of self-motion in the absence of real physical
movement through space. Vection can occur in real-life situations (e.g., ‘train illusion’) and in virtual
environments and simulators. The vast majority of vection research focuses on vection caused by
visual stimulation. Even though visually induced vection is arguably the most compelling type of
vection, the role of nonvisual sensory inputs, such as auditory, biomechanical, tactile, and vestibular
cues, have recently gained more attention. Non-visual cues can play an important role in inducing
vection in two ways. First, nonvisual cues can affect the occurrence and strength of vection when
added to corresponding visual information. Second, nonvisual cues can also elicit vection in the
absence of visual information, for instance when observers are blindfolded or tested in darkness. The
present paper provides a narrative review of the literature on multimodal contributions to vection.
We will discuss both the theoretical and applied relevance of multisensory processing as related to
the experience of vection and provide design considerations on how to enhance vection in various
contexts.
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1. Introduction

Illusory self-motion (‘vection’) has long fascinated humans and has been the
topic of research for more than a century (Fischer and Kornmüller, 1930; Fis-
cher and Wodak, 1924; Helmholtz, 1866; Mach, 1875; Urbantschitsch, 1897;
Warren, 1895; Wood, 1895). A classic example of vection in the real world
is the ‘train illusion’, whereby the visual motion of a train leaving the train
station causes the passenger of an adjacent, stationary train to erroneously
perceive their own train as moving. Vection can be perceived in all six degrees
of freedom and can be subdivided into circular vection (i.e., self-rotation about
any of the three body axes; yaw, pitch, roll and their combination; Allison et
al., 1999; Dichgans and Brandt, 1978; Held et al., 1975; Wood, 1895; Young et
al., 1975), linear vection (i.e., translational self-motion in any of the three lin-
ear directions and their combinations; Berthoz et al., 1975; Johansson, 1977;
Lepecq et al., 1993) and curvilinear vection (i.e., combined rotational and
translational self-motion — Riecke and Feuereissen, 2012; Riecke and Jor-
dan, 2015; Sauvan and Bonnet, 1993).

Traditionally, the vast majority of vection research has focused on illu-
sory self-motion induced by visual stimulation (see reviews by Andersen,
1986; Dichgans and Brandt, 1978; Howard, 1982, 1986; Mergner and Becker,
1990). However, real self-motion through space always involves multisensory
stimulation and self-motion perception is informed by sensory inputs from
across the auditory, vestibular, proprioceptive, and tactile senses (Campos and
Bülthoff, 2012). As such, there has been increasing interest in understand-
ing the nonvisual contributions to vection (Hettinger et al., 2014; Kooijman
et al., 2021; Palmisano et al., 2015; Riecke and Schulte-Pelkum, 2013). The
multisensory contributions to vection are particularly relevant considering the
current popularity and the wide-ranging application of modern virtual real-
ity (VR) and simulation technologies. The goal of these systems is often to
represent virtual experiences with high fidelity that allow users to feel fully
immersed and present within the simulated environment; which can include
the realistic perception of self-movements through space.

Historically, VR systems have primarily focused on stimulating the visual
system; however, advancements in technology now allow for more effective
integration of additional sensory information such as spatialized auditory cues
(e.g., via headphones), tactile cues (e.g., via gloves), or biomechanical cues
(e.g., via omnidirectional treadmills). Such multimodal systems are thought
to increase the levels of immersion, presence, and sensory–motor correspon-
dence, which could be important for a variety of applications such as gaming,
entertainment, healthcare, education, training, and telepresence/telerobotics.
Consequently, a growing number of studies have begun to consider how nonvi-
sual cues, either presented in isolation (e.g., auditory, biomechanical, or tactile
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cues alone) or combined with visual or other nonvisual cues, may alter the
sensation of vection. In general, while there is indeed evidence that nonvisual
sensory inputs alone can induce vection and that multisensory stimulation can
further enhance vection compared to unimodal stimulation, the findings in the
literature are mixed. Therefore, gaining a better understanding of when and
how multisensory stimulation can influence vection is not only important to
advance our fundamental understanding of vection and multimodal cue inte-
gration, but can also help to better maximize or minimize vection (depending
on the desired outcome) across a variety of applications.

The objectives of this narrative review are to summarize and synthesize
the state-of-the-art in multisensory vection research. Notably, the goal of the
present review is not to provide an overview of vection in general, as several
comprehensive reviews of vection have previously been published (Hettinger
et al., 2014; Palmisano et al., 2015; Riecke, 2011). Instead, we will review
what is currently known about how different nonvisual sensory modalities
such as auditory, tactile, proprioceptive, and vestibular cues contribute to vec-
tion, when presented in isolation or in combination with visual inputs and
in combination with each other. Importantly, in this review we only focus
on studies that specifically report on vection-related outcomes, such as (but
not limited to) vection intensity, onset time/latency, duration, and compelling-
ness (see Berti and Keshavarz, 2020; Kooijman et al., 2023a; Palmisano et
al., 2015; Warren and Wertheim, 1990 for an overview of vection measures).
Further, we do not include in this review studies that report on the perception
of self-motion parameters (e.g., estimated traveled distance, heading, velocity)
in the absence of explicit vection-related measures (Harris et al., 2000, 2002;
Higashiyama and Koga, 2002; Jürgens and Becker, 2006, 2011). Additionally,
we excluded studies that manipulated a sensory cue that did not explicitly con-
vey the sense of vection, such as manipulating one’s body position (e.g., supine
or upright; Groen and Bles, 2004; Guterman and Allison, 2019; Kano, 1991;
Mori et al., 2017; Nakamura and Shimojo, 1998; Oyamada et al., 2020). In the
subsequent sections, we will first discuss the ability of each individual nonvi-
sual sensory modality to induce vection before discussing modality-specific
contributions to multimodal vection when added to other modalities. Over-
all, we identified 95 experiments presented across 85 papers, and summarized
them in Supplementary Table S1).

While the literature generally agrees that vection involves an embodied per-
ception of self-motion, there are differences with respect to whether vection is
defined as mediated by visual cues alone or could be elicited by other sensory
cues, and if vection is an ‘illusion’ in the sense that the person experiencing
vection is not physically moving (or at least not moving much), or if any sub-
jective experience of self-motion should be referred to as vection (Palmisano
et al., 2015). As the focus of this review is on multisensory contributions
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to vection, we include any sensory contributions to self-motion perception
(not just visual). We also include situations with limited physical observer
motions, such as walking along a treadmill while otherwise being station-
ary (‘biomechanical vection’, see section 4), VR situations where users sit
on a moving-based motion simulator providing motion cueing, or VR users
employing leaning to control the simulated self-motion (typically using veloc-
ity or acceleration control), as discussed in section 6. We do, however, exclude
situations where the simulated or experienced self-motion is directly (e.g., lin-
early) related to the physical observer motion, such as when using physical
walking in VR, or redirected/scaled walking.

2. Visual Vection

Visually-induced vection is the most widely studied type of vection and has
been well documented and discussed previously (Andersen, 1986; Dichgans
and Brandt, 1978; Howard, 1982, 1986; Mergner and Becker, 1990; Palmisano
et al., 2011; Riecke, 2011; Schulte-Pelkum, 2007; Warren and Wertheim,
1990). Visual vection can be induced using, for example, optokinetic drums,
swinging rooms, or VR displays (e.g., head-mounted displays or projection-
based systems; Brandt et al., 1973; Dichgans and Brandt, 1978; Mach, 1875).
A variety of factors can affect the perception of visually-induced vection, such
as the physical field-of-view (FOV), the distinction between foreground and
background, and certain optic flow characteristics (e.g., speed, trajectory). For
instance, increasing the FOV has long been known to enhance visual vec-
tion, both for abstract optic flow patterns like stripes and dots (Andersen and
Braunstein, 1985; Brandt et al., 1973; Dichgans and Brandt, 1978; Howard
and Heckmann, 1989), as well photorealistic VR stimuli (Riecke et al., 2009a).
In fact, full-field stimulation can induce vection indistinguishable from physi-
cal self-motion and can no longer be easily suppressed (i.e., saturated vection;
Berthoz et al., 1975; Brandt et al., 1971; Held et al., 1975; Palmisano and
Gillam, 1998). Increasing the density of the optic-flow stimulus and increas-
ing the velocity (but not necessarily the acceleration) of the moving visual
pattern generally enhances vection up to a certain optimal stimulus veloc-
ity, but not further (Allison et al., 1999; Berthoz et al., 1975; Brandt et al.,
1973; Dichgans and Brandt, 1978; Howard, 1986; Keshavarz et al., 2019;
Schulte-Pelkum et al., 2003). Other factors contributing to increased vection
include, for example, stereoscopic (relative to monocular or binocular) pre-
sentation (Allison et al., 2014; Lowther and Ware, 1996; Palmisano, 1996,
2002), fixating a stationary foreground or staring at the visual stimulus instead
of relaxed viewing (Fischer and Kornmüller, 1930; Mach, 1875; Wallach,
1940; H. C. Warren, 1895), or adding simulated viewpoint or display jitter
(Bubka and Bonato, 2010; Nakamura, 2010; Palmisano et al., 2000, 2003,
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2011). In general, much has been learned about visual vection and several
comprehensive reviews have been published recently (Berti and Keshavarz,
2020; Hettinger et al., 2014; Kooijman et al., 2021; Lawson and Riecke, 2014;
Palmisano et al., 2015; Riecke and Schulte-Pelkum, 2013, 2015). As such, the
current review will primarily focus on other nonvisual sensory contributions
to vection.

3. Auditory Vection

Although visually induced vection has received the most attention in the liter-
ature, it has long been known that blindfolded stationary listeners can also
experience so-called auditory or audiokinetic vection from moving sound
fields (Dodge, 1923; Stein, 1910, as cited in Dichgans and Brandt, 1978;
Urbantschitsch, 1897). Detailed descriptions of auditory vection and associ-
ated factors have been previously reviewed (Hettinger et al., 2014; Riecke et
al., 2009a; Väljamäe, 2009). Like visual vection, auditory vection can be expe-
rienced in circular and linear dimensions. Auditory vection can be induced by
a variety of spatialized sound setups, such as speaker arrays positioned around
the listener, or headphones producing binaural recordings or synthesized using
head-related transfer function (HRTF) convolution (Dodge, 1923; Keshavarz
et al., 2014a; Lackner, 1977; Marme-Karelse and Bles, 1977; Riecke et al.,
2009b; Sakamoto et al., 2004; Väljamäe et al., 2005, 2008). While visual vec-
tion can be experienced by virtually all observers and can be indistinguishable
from actual self-motion for full-field stimulation (Berthoz et al., 1975; Brandt
et al., 1971; Held et al., 1975; Palmisano and Gillam, 1998), auditory vection
is typically much weaker and less frequently observed (Väljamäe, 2009; Väl-
jamäe and Sell, 2014). Auditory vection in blindfolded listeners can also be
elicited by using auditory metaphorical motions using a Shepard–Risset glis-
sando, a sound stimulus that is perceived to perpetual ascend (or descend) in
pitch but is not spatialized (Mursic and Palmisano, 2020, 2022; Mursic et al.,
2017), and can result in surprisingly compelling vection, almost at the level of
visually induced vection (Mursic et al., 2017).

3.1. Combined Auditory and Visual Vection

Although auditory cues presented in isolation only create weak to moderate
vection and only in 20–80% of blindfolded listeners, adding spatialized sound
can significantly enhance vection when the sound moves congruently with the
visual stimulus (Gagliano, 2016; Keshavarz et al., 2014a; Riecke et al., 2005a,
b; Riecke et al., 2009a). For instance, Riecke et al. (2009a) showed that vec-
tion intensity was increased when a rotating image of a marketplace scene
was coupled with corresponding rotating sound cues, compared to a visual-
only condition. However, adding stationary (nonrotating) auditory cues by
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using binaurally recorded ambient sound that matched the visual scene but was
not rotating did not significantly reduce vection compared to the visual-only
condition (Riecke et al., 2009a). Furthermore, adding nonspatialized (mono)
sound did not further enhance circular vection, suggesting that the spatializa-
tion and movement of the sound sources is likely to have facilitated vection.
Similar facilitating effects have also been found in trimodal paradigms (Krui-
jff et al., 2016; Murovec et al., 2021), where adding spatialized auditory cues
to visual and tactile cues enhanced circular vection (i.e., increased intensity)
compared to conditions where sound was not present.

While the majority of literature shows a small but significant vection
enhancement when adding auditory to visual cues, a small number of stud-
ies have not observed these beneficial effects (Keshavarz and Hecht, 2012a,
b; Ramkhalawansingh et al., 2016). One factor that may contribute to the dis-
crepancy across studies relates to the strength of the visual stimulus, in that
very strong vection-inducing visual stimuli may leave less room for added
benefits from additional sensory inputs (i.e., lead to ceiling effects). This is
illustrated in Riecke et al. (2009a), where vection intensity was increased
when auditory cues were added to the rotating visual scene, and this bimodal
vection-facilitating effect was further enhanced when the field of view of the
visual stimulus was reduced from 54° × 45° to 20° × 15°, suggesting that the
presence of multisensory cues was particularly effective in situations where
the visual cue alone was less vection-inducing. However, this effect of greater
bimodal benefits under conditions of weaker visual vection is not consistently
observed (see Murovec et al., 2021).

There is also some evidence that nonspatialized sounds can also enhance
visually induced vection depending on the particular characteristics of the
sounds (Mursic et al., 2017; Seno et al., 2012). For example, sounds increasing
in intensity (as if approaching) can enhance forward vection when accompa-
nied with radially expanding visual stimuli; however, this effect is not similarly
observed for receding intensity and backward vection (Experiment 1; Seno et
al., 2012). Additionally, when presented with vertical motions, ascension and
descension of sound frequency (e.g., pitch) facilitate upward and downward
vection, respectively (Experiment 2; Seno et al., 2012). Seno (2013) demon-
strated that adding music with a fast tempo increased vection (lower vection
latencies and longer durations) compared to slower tempo music and no music.
The authors suggest that perceptual plausibility and cross-modal consistency
might be an underlying factor explaining these observations (see also Hollya
and McCollumb, 2008; Riecke et al., 2005c; Riecke et al., 2006a; Väljamäe et
al., 2005). However, especially for metaphorical and other higher-level (such
as top-down or cognitive) contributions to vection, other factors like experi-
mental demand characteristics and participants expectations and speculations
might also play a role (see also discussion in Palmisano et al., 2015; Riecke et
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al., 2015a), and further studies are needed to investigate if such metaphorical
vection is strong enough to also provide behavioral benefits such as helping to
facilitate perspective switches (Riecke et al., 2015a).

4. Biomechanical Vection

Biomechanical vection refers to the illusion of moving through space that is
caused by sensory cues generated through, for example, walking on a circular
treadmill while being otherwise stationary. These cues may include a com-
bination of proprioceptive, tactile, and vestibular cues. These cues typically
occur due to the active movement of the legs; however, other body movements
such as arm movements have also been shown to influence vection. A variety
of names have been used to refer to vection induced by circular or curvilin-
ear walking motions, including ‘biomechanical’ vection (Bruggeman et al.,
2009; Riecke et al., 2011), ‘apparent stepping around’ (Bles, 1981; Bles and
Kapteyn, 1977), ‘podokinesthetic’ vection (Becker et al., 2002), and ‘podoki-
netic’ vection (Jürgens and Becker, 2011). For the sake of consistency, we will
use the term biomechanical vection in this review.

VR-integrated walking interfaces are becoming increasingly available,
affordable, and sophisticated (Di Luca et al., 2021; Nilsson et al., 2018;
Steinicke et al., 2013) and can include, for example, linear treadmills, circular
treadmills, omnidirectional treadmills, and low-friction surfaces (Campos and
Bülthoff, 2012; Cherni et al., 2020; Frissen et al., 2013; Riecke et al., 2018).
Circular treadmill walking often involves stepping along a rotating floor plate,
similar to a carousel, in order to remain stationary in place. Omnidirectional
treadmills allow for walking in all directions (e.g., Cherni et al., 2020; Frissen
et al., 2013; Riecke et al., 2018).

Circular treadmills have been shown to induce vection fairly reliably, and
lead to circular vection when people are positioned above the rotation cen-
ter, and curvilinear vection when people walk off-center (Becker et al., 2002;
Bles, 1981; Bles and Kapteyn, 1977; Garing, 1999; J. Lackner and DiZio,
1984; Riecke et al., 2015b). However, walking even on highly sophisticated
linear or omnidirectional treadmills does not seem to be sufficient for reliably
inducing vection (Durgin et al., 2005; Riecke and Schulte-Pelkum, 2013). This
discrepancy is surprising given that that the biomechanics of linear treadmill
walking can be fairly similar to normal walking, especially when treadmills
are equipped with force feedback harnesses (Hollerbach, 2002; Steinicke et
al., 2013), whereas walking on circular treadmills is arguably less common.
Nevertheless, biomechanical circular vection can be induced in most blind-
folded observers, with reported rates of occurrence including 80% (Garing,
1999), 90% (Bruggeman et al., 2009) and almost 100% (Bles, 1981; Riecke
et al., 2011; Riecke et al., 2015a). Biomechanical circular vection tends to be
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much more compelling than auditory vection, yielding vection intensity rat-
ings comparable to visually induced circular vection (Riecke et al., 2015b).

Sensations of illusory self-motion can also be achieved by passive arm
movements. When participants are seated stationary inside a completely dark
optokinetic drum that slowly rotates around the earth-vertical axis, participants
can experience strong illusory self-rotation (arthrokinetic circular vection) by
reaching out to touch the moving walls of the drum with their hand, and letting
their arm be passively rotated around their shoulder joint (Brandt et al., 1977).
Such arthrokinetic vection was reported as quite compelling with a very short
onset latency (1–3 s), and could not be distinguished from actual self-motion.
This was corroborated by an arthrokinetic nystagmus and considerable after-
effects for both nystagmus and circular vection. Further, producing hand-over-
hand walking-like sideways motions to stay in contact with a sideways-moving
desk-like platform elicited linear sideways vection in 37% of trials (Bles et al.,
1995).

4.1. Combined Biomechanical and Visual Vection

Although biomechanical cues provided by circular treadmill walking have
been shown to induce compelling sensations of circular vection when pre-
sented alone (Bles, 1981; Garing, 1999; Lackner and DiZio, 1984; Riecke et
al., 2015b), surprisingly little research to date has investigated the contribution
of these cues when jointly presented with corresponding visual cues. In one of
the first studies investigating the effect of visual combined with biomechanical
cues on vection, Lackner and DiZio (1988) had participants walk off-center on
a rotatable circular platform centered inside a large, independently rotatable
optokinetic drum. When the platform and the drum rotated synchronously and
in the same direction while participants were stepping to stay in place, most
participants reported a compelling sensation of vection, resulting in feelings
of saturated vection (e.g., that they were forward-walking off-center on a sta-
tionary circular platform inside a stationary drum (Bles and Kapteyn, 1977;
DiZio and Lackner, 2002). Freiberg et al. (2013) and Riecke et al. (2015b)
compared vection ratings when rotating visual cues and biomechanical cues
from stepping along a circular treadmill were presented either individually or
simultaneously. In both studies, vection onset times were fastest and vection
intensity and vection compellingness were highest in the bimodal conditions
compared to either one of the unimodal conditions.

Interestingly, unlike circular vection, the act of walking on a linear tread-
mill by itself is insufficient to reliably induce vection (Riecke and Schulte-
Pelkum, 2013), and forward linear vection can even be reduced if visual cues
are combined with biomechanical cues from walking on a linear treadmill
(Ash et al., 2013; Kitazaki et al., 2010; Onimaru et al., 2010; Palmisano et al.,
2014; see also discussion in Riecke and Schulte-Pelkum, 2013), even if visual
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and walking speeds are the same (but see Seno et al., 2011a). For instance,
compared to standing still, vection is reduced when expanding optic flow
(simulating forward self-motion) is combined with forward linear treadmill
walking at the same speed (Ash et al., 2013; Kitazaki et al., 2010; Onimaru
et al., 2010; Palmisano et al., 2014). Similarly, backward vection is reduced
when visually contracting optic flow simulating backward motion is combined
with backward treadmill walking (Onimaru et al., 2010). The underlying rea-
sons for reductions in visual vection for linear treadmill walking are not yet
fully understood and several possible explanations have been discussed (Ash
et al., 2013; Riecke and Schulte-Pelkum, 2013). For example, this effect could
be related to the ‘freezing illusion’ as described by Wertheim and Reymond
(2007), where an optic-flow pattern suddenly appears to freeze when vestibu-
lar stimulation is added. Another explanation is offered by the ‘Pavard and
Berthoz’ effect (Pavard and Berthoz, 1977), in that the walking cues may
reduce the perceived relative visual speed (see also Durgin et al., 2005b), and
thus, result in decreased vection. It remains an open question, though, how
these potential explanations might contribute to inhibiting only biomechanical
linear, but not circular vection.

The addition of arm movements, on the other hand, has been shown
to increase linear vection when accompanied with visual stimulation. For
instance, linear vection in depth was enhanced when standing observers were
exposed to visual cues while mimicking breaststroke swimming using arm and
upper-body movements, and vection enhancement was stronger for congruent
optic flow (expanding optic flow simulating forward self-motion) than incon-
gruent (backward) optic flow (Seno et al., 2013).

4.2. Combined Biomechanical and Auditory Vection

Biomechanically-induced circular vection can also be influenced by the addi-
tion of auditory stimuli. For instance, Riecke et al. (2011) demonstrated that
the concurrent presentation of rotating binaural spatialized auditory cues dur-
ing blindfolded stepping along a rotating circular treadmill that participants
were seated above significantly increased vection compared to conditions
where auditory and biomechanical cues were each presented in isolation. In
a related study, Riecke et al. (2010) showed that while spatialized sound
enhanced vection when the sound was rotating synchronously with the rotat-
ing circular treadmill blindfolded listeners were stepping along (while seated),
vection was impaired when the spatialized sound was stationary.

5. Tactile Vection

Tactile cues to self-motion can include stimuli such as sliding touch, airflow
directed toward the skin, and vibrotactile cues. The use of tactile cues to induce
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or enhance vection is becoming increasingly popular, but yielding mixed
results across studies (for a review, see Costes and Lécuyer, 2023; Kooijman
et al., 2021). One method of providing vection-inducing tactile stimulation
is ‘sliding touch’, where participants use their hands or feet to touch moving
surfaces in the surrounding area (Brandt et al., 1977). For example, circular
vection was induced in blindfolded participants when they touched the rotat-
ing floor of a circular treadmill with their restrained feet such that they felt
the floor sliding underneath their feet (Lackner and DiZio, 1984). This sensa-
tion was further strengthened when their hands also touched a circular rail that
slid beneath their outstretched hands. Similarly, Dichgans and Brandt reported
that touching the inside of a moving optokinetic drum in complete darkness
can also induce circular vection, although vection intensity was rather weak
(Dichgans and Brandt, 1978). More recently, Murovec et al. (2021) used a
motorized circular ring that rotated underneath the fingertips of participants
and found that although tactile cues alone elicited vection in a few partici-
pants, the overall effect was very weak and did not statistically differ from a
control condition with no tactile stimulation.

Another common method of providing tactile stimulation to the skin is via
airflow simulating wind. There is mixed evidence as to whether airflow alone
can induce vection. For instance, Murata et al. (2014) were able to success-
fully induce forward linear vection in a subset of blindfolded participants when
constant airflow was directed at their back, but Seno et al. (2011b) did not find
similar results. Although the literature on vection generated by tactile cues
alone is rather limited, combining tactile and other sensory cues have received
more attention.

5.1. Combined Tactile/Haptic and Visual Vection

Murovec et al. (2021, 2022) showed that adding tactile cues (participants’
hands touching a rotating circular ring) to synchronously rotating visual and
auditory stimuli significantly enhanced the intensity and duration of vection
compared to visual and auditory stimuli alone. However, Van Doorn et al.
(2012) showed that vection was not enhanced when adding tactile stimulation
to visual inputs by sliding the tip of a metal rod up and down the participant’s
back at a speed equal to the up/down motions of an optokinetic stimulus.

In a study by Ouarti et al. (2014), participants held a handlebar attached
to a 6DOF force feedback device (Haption Virtuose; tactile and proprio-
ceptive inputs) that pushed the handlebar in the direction and with a force
aligned (or contra-aligned) with either the current acceleration or velocity
vector of a visual motion scene depicted on a projection screen. Participants
were instructed to resist the push/pull of the haptic device to keep it in the
same position. Irrespective of whether a push or pull paradigm was used, this
force feedback enhanced vection, especially when forces were proportional to
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the visually displayed accelerations. This could have useful implications for
low-cost vection enhancement for various vehicle simulators (e.g., helicopter
simulator cyclic stick).

With regards to airflow, Seno et al. (2011a) found that providing wind
increased the sensation of vection when presented alongside congruent,
expanding optic flow (see also Feng et al., 2016). However, vection was
not enhanced when wind was presented with contracting optic-flow stimuli
corresponding with backward self-motion, indicating the importance of mul-
timodal directional consistency. Yahata et al. (2021) demonstrated increased
vection when the visual stimulus of a corridor that was on fire was paired with
hot-temperature wind, but not with room-temperature wind. Similarly, greater
vection magnitude scores were observed when room-temperature wind was
introduced in a nonfiery corridor compared to no wind.

While vibrotactile stimulation alone does not seem to be sufficient to reli-
ably induce vection (Tinga et al., 2018), vibration cues have been shown
to enhance vection when presented in addition to other sensory stimuli. For
example, adding vibrations to the seat and floor plate of a motion platform or
wheelchair device during visually induced vection reduced vection onset laten-
cies and increased convincingness ratings of vection (Riecke et al., 2005b;
Schulte-Pelkum, 2007). However, when vibrations did not match the veloc-
ity profile of the visual simulation, decreased vection was reported. Adding
vibrations to the participants’ shoes can also enhance the sensation of vec-
tion compared to visual stimulation alone (Hayashizaki et al., 2015; Ikei et
al., 2014; Kitazaki et al., 2016; Kruijff et al., 2016; Matsuda et al., 2021;
Nilsson et al., 2012). The type of vibration can also modulate the onset and
strength of vection: for example, increased vection was experienced by par-
ticipants who viewed an optic-flow stimulus while experiencing vibratory
stimulation to their feet in the pattern of saw tooth (Nordahl et al., 2012)
and sinusoidal waveforms (Farkhatdinov et al., 2013), relative to white/pink
noise waveforms. Other studies observed mixed results, in that adding footstep
vibrations to an optic-flow stimulus did not increase the perceived sensation
of movement (Feng et al., 2016), or increased sensations only in a subset of
participants (Tamada et al., 2017). Kruijff et al. (2016) found that adding foot
roll-off vibrations and footstep sounds to a visual scene significantly increased
participants’ sensation of vection. Another study (Lind et al., 2016) found that
adding vibrations to visual, auditory, and leaning-based vestibular/propriocep-
tive cues yielded increased ratings of realism and compellingness; however,
vection intensity was not affected.

Riecke et al. (2005b) suggested that adding vibrations might enhance vec-
tion via at least two potential mechanisms: (1) adding vibrations introduces
noise to the vestibular system rendering vestibular estimates less reliable, in
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turn decreasing the visuo-vestibular cue conflict (visually moving but phys-
ically stationary) and facilitating visual vection and; (2) adding vibrations
may add to the realism of the visually simulated motion as most real-world
motions are accompanied by some kind of vibration. Consistent with the lat-
ter argument, the three participants in the Riecke et al. (2005b) study who
reported that the vibrations did not match the visual velocity profile also expe-
rienced reduced vection when vibration cues were added to the visuals, and
they explained that the conflict made the self-motion illusion less realistic and
convincing.

5.2. Combined Tactile, Visual, and Auditory Vection

Auditory vection in blindfolded participants can also be enhanced by provid-
ing concurrent vibration cues, both for circular vection (Riecke et al., 2005c,
2009b) and forward linear vection (Väljamäe et al., 2006). Further, Soave et
al. (2020) found significant increases in linear forward vection intensity in a
visual–auditory–haptic condition relative to audio-visual and visual-only con-
ditions. Overall, because generalized vibrations and tactile cues can typically
be provided with relatively little cost and technical complexity, they may be a
cost-effective way to enhance self-motion perception for a variety of applica-
tions. Importantly, recent research has shown that congruency between vibra-
tional cues and audio-visual vection stimuli is critical to achieve a multimodal
enhancing effect. Kooijman et al. (2023b) demonstrated that audio-visual vec-
tion induced through a flight simulator was less intense and less convincing
when vibrations were applied to the participants neck. Here, the authors spec-
ulated that the addition of vibrations was detrimental to vection because the
delayed presentation caused them to be interpreted as a conflicting stimulus to
the auditory and visual cues.

6. Vestibular Vection

Although the term vestibular vection is hardly used in the literature, it
describes illusory self-motion induced by direct vestibular stimulation and
physical motion cueing elicited by various interfaces such as moving-base
motion simulators or leaning-based VR locomotion interfaces. With regards
to direct vestibular stimulation, caloric (Young, 1984) and galvanic (e.g.,
Berthold and Dzendolet, 1973; Dzendolet, 1963) vestibular stimulation are
common techniques to stimulate the vestibular organs without moving the
participant. In the context of vection, galvanic vestibular stimulation (GVS)
through electrical stimulation delivered directly to the vestibular nerve fibers
has been predominantly applied.

With regards to motion cueing, advanced virtual reality simulators (driv-
ing/flying) can offer physical motion via diverse setups such as hexapod
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motion platforms (Stewart platforms), linear sled platforms, robot arms (cyber
motion simulator), or cable robot simulators to increase the user’s sensa-
tion of self-motion (Campos and Bülthoff, 2012; Harris et al., 2002). These
moving-base simulators are able to provide vestibular stimulation by way of
passively moving users in the direction of the simulated self-motion and sub-
sequently applying motion washout filters to slowly and ideally imperceivably
move them back to their original position while visually portraying contin-
ued forward self-motion (see Lawson and Riecke, 2014 for an overview).
As such, these devices can both introduce real self-motion as well as create,
for example, sustained illusory self-motion (i.e., vection) using momentary
motion-cuing techniques.

6.1. Combined Vestibular and Visual Vection

6.1.1. Direct Vestibular Stimulation
Several studies on electrical stimulation of the vestibular system (GVS) have
shown that it is possible to produce compelling vection (primarily rotation
along the roll axis) using GVS (Cress et al., 1996). For example, Cress et
al. (1997) contrasted the effects of visually induced roll vection, electrical
stimulation of the vestibular nerve alone (producing illusions of roll motion),
and combined visual and electrical vestibular stimulation and found that the
latter bimodal condition produced sensations of self-motion that were rated
as significantly more realistic by participants than either of the two unimodal
conditions alone.

In studies where optokinetic stimulation is coupled with GVS, a facilita-
tory effect is often found (Lepecq et al., 2006). Specifically, Maeda et al.
(2005) demonstrated that adding anti-phase GVS (e.g., visual stimulation and
GVS in opposite directions) can enhance upward linear vection, relative to
GVS in phase with the visual stimulus, GVS-only, or visual-only conditions.
Weech and Troje (2017) also showed that applying direct vestibular stimu-
lation (GVS and bone conducted vibration) to the mastoids while observing
a wide-field visual rotation about the roll axis significantly reduced vection
onset latency. It has been suggested that adding direct vestibular stimulation
can reduce the sensory mismatch between the visual and vestibular systems,
and thus propagate the sensation of vection more quickly. Important to con-
sider is that GVS has side-effects including creating unpleasant or even painful
sensations. Alcohol consumption can also affect the vestibular system and
greater alcohol consumption has been associated with increased vection (Seno
and Nakamura, 2013). In sum, direct vestibular stimulation (apart from physi-
cally moving users) does not seem suitable for most applications and benefits
are typically outweighed by undesirable side-effects.
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6.1.2. Passive Motion Cueing
Vestibular stimulation through passively moving a seated participant while
viewing a visual motion stimulus has been shown to effectively enhance vec-
tion (Melcher and Henn, 1981; Schulte-Pelkum, 2007). For example, Wong
and Frost (1981) presented seated participants with rotating optokinetic stim-
ulation while vestibular cues were delivered through brief physical rotations
(clockwise and counter clockwise) to the participants’ chair. Vection onset
latencies were significantly shortened when vestibular motion in the oppo-
site direction of the visual motion were added compared to conditions with
visual stimulation alone. Similarly, Berger et al. (2010) showed that lin-
ear self-motion simulation was reported as most ‘believable’ when visual
accelerations were combined with concurrent backward physical pitches of
a hexapod motion simulator compared to visual accelerations alone. Combin-
ing sinusoidal vertical physical and visual motion that was out of phase from
each other showed that vection was dominated by the visually-indicated self-
motion, and was more compelling for larger physical movements, even though
the physical movements were incongruent (Wright, 2009).

However, large physical motions might not always be needed to signifi-
cantly enhance vection. For example, using a motion platform to provide small
inertial accelerations (kicks) of only 1–3 cm that coincide with the onset of
visually simulated forward motions can be enough to almost double vection
intensity and convincingness ratings, and reduce by more than half vection
onset latencies (Riecke et al., 2006b; Schulte-Pelkum, 2007). Similarly, vec-
tion has been enhanced by small kicks provided to a manual wheelchair par-
ticipants were seated in (Schulte-Pelkum, 2007), or tilting a gaming chair in
the direction of simulated self-motion in VR (Feuereissen, 2013; Riecke and
Feuereissen, 2012). Furthermore, Groen and Bles (2004) found that vection
occurrences increased from 60% (in the visual-only condition) to 100% when
fore–aft body tilting was synchronously applied in a way that was coinci-
dent with the fore–aft visual motion. Koge et al. (2015) used an elevator as
a motion platform which moved up, down, or not at all, paired with a visual
stimulus which always displayed upward motion. When elevator motion and
visual motion were consistent (i.e., both representing upward motion), vection
intensity was highest relative to inconsistent directional motion and visual-
only conditions. Thus, consistency between visual and vestibular cues (e.g.,
alignment in both timing and direction) is likely an important factor for suc-
cessfully enhancing vection (see also Berger et al., 2010; Wong and Frost,
1981).
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6.1.3. Active Motion Cueing
Vection in virtual environments can also be increased through user-powered
motion cueing interfaces (e.g., leaning-based interfaces) that provide addi-
tional body-centered self-motion cues (vestibular and proprioceptive) com-
pared to, for instance, hand-held controllers. For example, augmenting a man-
ual wheelchair with force feedback by adding elastic bands, such that users
could provide themselves with minimal motion cueing, significantly enhanced
vection (reduced onset latency and heightened intensity and convincingness
ratings) compared to joystick or mouse-based locomotion control (Riecke,
2006). Kruijff et al. (2015) had participants engage in static leaning (remaining
in a forward- or backward-tilted position) or remaining upright for the dura-
tion of a virtual environment navigation task using a joystick (Experiment 1).
Participants also engaged in dynamic leaning (leaning forward as they tilted
their joystick forward to start forward self-motion through the VR; Experi-
ment 2). Although static leaning did not significantly influence vection (even
though it increased perceived distance traveled), dynamic leaning intensified
forward linear vection and also improved user’s involvement, engagement, and
enjoyment relative to joystick control.

Similar robust vection facilitation was found when users actively con-
trolled self-motion in VR by leaning, as tracked by measuring torso inclination
(Riecke et al., 2016), or as tracked by measuring center-of-pressure changes
for users standing on a Wii balance board force plate (Kruijff et al., 2016). Par-
ticularly strong vection facilitation has been observed when the head-mounted
display’s built-in position tracking was used to control virtual self-motions
(compared to standard hand-held controllers), both for ground-based loco-
motion in VR when seated (Hashemian et al., 2021; Riecke et al., 2021) or
standing (Hashemian et al., 2023; ‘NaviBoard’, Riecke et al., 2021), as well
as for 3D locomotion (flying) (Adhikari et al., 2021; Hashemian et al., 2020).

6.2. Head Oscillation and Whole-Body Movements and Orientations

Adding visual oscillations or viewpoint jitter to a vection-inducing visual
stimulus has been shown to reliably enhance vection compared to a smooth
optic-flow display, even though it increases visual–vestibular conflicts that one
might assume should reduce vection (Nakamura, 2013; Palmisano and Riecke,
2018; Palmisano et al., 2000, 2011). Interestingly, this vection-facilitating
effect of display oscillations can occur (and is often similarly strong) both
when the visual display oscillations are produced by active head motions (e.g.,
of observers facing a screen, or wearing an HMD), gaze shifting, or just pas-
sively viewed while keeping one’s head stationary (Ash and Palmisano, 2012;
Ash et al., 2011; Luu et al., 2021; Palmisano and Kim, 2009). Forward linear
vection in HMD-based VR can also be affected by how user’s head rotations
are compensated for (or not). For instance, Palmisano et al. (2017) found that
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vection intensity was increased when user’s oscillatory left–right head motions
were compensated for in the contralateral direction (as is standard in HMD-
based VR with head tracking), compared to the ipsilateral direction, or not
compensated at all when an aperture was simulated to reduce the field of view.
However, when no aperture was used and the full HMD’s field of view was
used, the effect of visual compensation type failed to reach significance. Other
similar studies have shown no effect on vection (Kim and Palmisano, 2008;
Luu et al., 2021) or reduced vection (Kim et al., 2015) when head rotations
(in any direction) were performed while viewing optokinetic stimuli.

The literature is also somewhat mixed regarding the extent to which whole-
body movements influence vection. When participants in Lowther and Ware
(1996) were asked to move in a “left–right, forward–back motion, one step
in each direction” (p. 234) while watching a circular (yaw) vection or linear
(lateral) vection stimulus on a projection screen, vection onset latency was
longer compared to a no-movement condition. However, when head tracking
was switched on such that the projected view was coupled to participants’ head
position, vection onset latencies decreased to the level of the no-movement
condition. Including head tracking while executing whole-body movements
has been discussed as not only important for visually stabilizing the simu-
lated scene, but also critical for establishing a primary reference frame where
visual motions of the scene are more easily interpreted as vection (self-motion)
instead of object motion (Riecke, 2011; von der Heyde and Riecke, 2002).

Finally, changes to inputs about physical body orientation (e.g., upright vs
supine) while viewing dynamic visual stimuli may also affect vection ratings.
For example, several studies have demonstrated faster vection onset times,
greater linear vection intensity, and more prolonged roll vection when partici-
pants were sitting upright (aligned with gravity) compared to when they were
lying supine (Guterman and Allison, 2019; Guterman et al., 2012; Kano et al.,
1991; Oyamada et al., 2020; Tovee, 1999; Wang et al., 2021). Taken together,
the literature suggests that vection tends to be facilitated when the direction of
linear vection is parallel to the gravitational axis (Seno, 2014). Circular vection
seems to be facilitated when the rotation axis is aligned with the gravitational
axis, such that there is not added visual–gravitational cue conflict when expe-
riencing circular vection.

7. Other Sensory Contributions to Vection

Other sensory manipulations likely to affect vestibular and somatosensory
inputs include environmental factors such as buoyancy (Fauville et al., 2021)
and atmospheric pressure, which could thereby also influence vection. For
example, Nishimura et al. (2014) decreased the atmospheric pressure within a
climate chamber to simulate the experience of high altitudes (e.g., hypobaric
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hypoxia) while participants viewed a moving visual stimulus. It was found that
reduced pressure (simulating higher altitudes) inhibited vection, reflected by
lower vection magnitude, shorter duration, and increased latency. While smell
has received very little consideration in the vection literature, one study by
Aruga et al. (2019) demonstrated that linear vection strength was significantly
positively correlated with scent strength (lavender and banana).

8. General Discussion

The goal of the present review was to provide an overview of the existing
literature on multisensory contributions to vection. Overall, we identified 95
experiments across a total of 85 papers, and summarized them in an inter-
active online table (see also Supplementary Material). Note that we only
included experiments that explicitly compared vection between multisensory
and unisensory stimulation and thus allow for assessing the impact of adding a
sensory modality on vection. This table includes information on vection type
(linear, circular, curvilinear), direction (front-back, lateral, up–down, yaw,
pitch, roll), vection measure (intensity, duration, onset latency, convincing-
ness), and multisensory contribution of the added cue (vection enhancement,
vection enhancement in some conditions, no effect, vection reduction). The
table is interactive in that readers can search and sort for specific cue combi-
nations or modalities/parameters of interest (see Note 1).

8.1. Multisensory Contributions to Vection

Based on our review, the most commonly studied modalities in multisensory
vection research apart from visual inputs include tactile (n = 40), followed by
vestibular (n = 26), auditory (n = 19), and biomechanical (n = 7). Figures 1a
and b provide graphical overviews of the outcomes of these experiments and
potential vection enhancements when manipulating different sensory modal-
ities in a multimodal vection context. Summaries are organized by sensory
modality (Fig. 1a) and the stimulus direction (linear, curvilinear, or circular;
Fig. 1b).

Overall, the literature suggests that adding sensory cues generally increases
vection (∼73% showed vection enhancement in some or all conditions). How-
ever, whether adding sensory inputs enhances or reduces vection (and to
what degree) likely depends on several factors that vary widely across stud-
ies, including (but not exclusive to) movement axis/direction, vection mea-
sures, spatial/temporal/semantic congruency across modalities, and individual
participant characteristics/demographics. In Table 1 we offer considerations
specific to how each modality might be used to enhance vection, and later
elaborate on the applied relevance of multimodal vection research.
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Figure 1. Stacked bar plot of experiments that showed a vection enhancement, vection enhance-
ment in some conditions, no effect, or a vection reduction, depending on (a) the manipulated
sensory modality in a multimodal vection approach and (b) the stimulus motion direction (lin-
ear, curvilinear, or circular). Note: Some papers may be represented more than once on the
graph if (i) they conducted multiple experiments, (ii) they investigated multiple sensory cues or
(iii) they investigated more than one type of vection.

Multisensory stimulation may alter the sensation of vection in at least two
possible ways (see Riecke and Schulte-Pelkum, 2015 for an in-depth discus-
sion) including bottom-up and top-down effects. First, bottom-up, sensory
driven contributions directly affect vection. Generally speaking, multisen-
sory vection enhancements seem to be more likely and stronger when each
sensory cue is spatially and temporally congruent and redundant with the
other co-present vection-inducing sensory inputs (Keshavarz et al., 2014a;
Murovec et al., 2021; Riecke et al., 2011). Principles of multisensory integra-
tion likely contribute to these effects including, for example, bimodal vection
enhancements leading to increased perceptual estimate precision and relative
cue-weighting related to individual sensory reliabilities (more reliable sen-
sory inputs being weighted higher). Optimal integration primarily occurs when
multiple sensory inputs are spatially and temporally aligned, and those that fall
outside of this ‘window of integration’ or ‘coherence zone’ may no longer lead
to multisensory benefits (and in some cases, lead to adverse effects on percep-
tion and performance). In fact, vection can be inhibited if sensory inputs are
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Table 1.
Summary of design considerations for enhancing vection through specific modalities. For all
modalities, congruency with other sensory cues indicating self-motion and the overall locomo-
tion paradigm is important

Modality Design considerations for enhancing vection

Auditory Use spatialized sound rendering, ideally with multiple sound sources
associated with stationary landmarks. Audio cues semantically associated
with self-motion can also contribute, but tend to have weaker effects,
although auditory metaphorical vection can be surprisingly powerful.

Biomechanical Circular patterns of stepping can both induce and enhance vection,
whereas linear stepping (through walking on a linear treadmill) or
walking in place (without treadmill) often does not affect vection or can
even impair vection. Hand-over-hand walking motions might also
contribute to linear vection.

Tactile/haptic Vibrations have been the most researched tactile cue and show the most
consistent facilitation among all tactile cues, even though they are not by
themselves able to induce vection. The degree of vection facilitation
varies and can be small. Other tactile/haptic stimuli that can facilitate
vection include wind, sliding touch, and force-feedback devices.

Vestibular: passive
motion cueing

Inertial motion aligned with the simulated self-motion direction is most
effective at increasing vection, and can be combined with full motion
cueing and washout filters where feasible/appropriate. Even small inertial
motions (kicks/jerks) can be effective. Cross-modal temporal and
directional synchrony is essential, whereas the amplitude of vestibular
stimulation seems less critical.

Vestibular:
user-powered
motion cueing
(e.g., leaning)

Using dynamic leaning to control simulated self-motion can enhance
vection, while static leaning does not. Head-centered leaning (e.g.,
HeadJoystick or NaviBoard) has been most effective compared to
tracking chair/backrest movements or center of pressure changes.

incongruent assuming they fall outside of this binding window (e.g., Seno et
al., 2011a).

On the other hand, there is also evidence that higher-level, cognitive factors
(top-down contributions) can also enhance or modulate vection, for example
by changing believability, attentional focus, or cognitive demands (D’Amour
et al., 2021; Kitazaki and Sato, 2003; Palmisano and Chan, 2004; Seno et al.,
2011c; Trutoiu et al., 2008). It is possible that multisensory inputs also affect
the cognitive processes that influence vection. For example, multisensory cues
have been shown to help establish a cognitive-perceptual framework of ‘mov-
ability’, where participants are primed to believe that actual self-motion is
possible (Andersen and Braunstein, 1985; Lepecq et al., 1995; Riecke, 2011;
Riecke et al., 2005c, 2009b; Schulte-Pelkum, 2007; Wright et al., 2006) as
discussed in detail in Riecke (2009, 2011) and Riecke and Schulte-Pelkum
(2013, 2015). Vection can also be facilitated by providing more naturalistic
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stimuli and improving ecological validity (Riecke, 2011; Riecke et al., 2005c;
Schulte-Pelkum, 2007), which can be further enhanced by consistent multisen-
sory stimulation (Lind et al., 2016; Nilsson et al., 2012; Nordahl et al., 2012).
Facilitating effects of presenting congruent and redundant multimodal cues
on vection might also be mediated by enhanced immersion, presence, con-
vincingness and/or realism (Riecke and Schulte-Pelkum, 2015). For example,
the more the laboratory conditions represent a real-life scenario, replicating
the specifics of what the real world looks/sounds/feels like when experiencing
physical self-motion, vection is enhanced. There is also increasing evidence
that the learned semantic associations with a stimulus (e.g., its meaning) can
determine whether and how much that stimulus contributes to vection, both
for unisensory vection (Riecke et al., 2005c, 2006a; Väljamäe et al., 2008) and
multisensory vection (Lind et al., 2016; Nilsson et al., 2012; Nordahl et al.,
2012). For example, foot sole vibration was more effective in inducing vection
when the visually presented virtual scene depicted the inside of a train com-
partment or elevator (semantically associated with vibrations of the feet in the
real world), compared to scenes that did not include semantically associated
visuals, such as a bathroom or a dark screen (Nilsson et al., 2012).

8.2. Applied Relevance of Multimodal Vection Research

There are many reasons why enhancing our understanding of multisensory
vection as a phenomenon is important, including contributions to fundamental
knowledge about how the brain perceives self-motion as well as for the devel-
opment and deployment of more compelling simulations and VR-based tech-
nologies. While the vast majority of vection research has historically focused
on visually induced vection, in real life actual self-motion is almost always
a multisensory phenomenon. Therefore, it seems logical and advantageous to
implement and combine inputs from multiple sensory systems when creating
the sensation of vection. As such, multisensory vection may more accurately
resemble the multisensory processes underlying actual self-motion.

There are many circumstances in the context of research (e.g., using fMRI,
space-constrained lab studies) and applications (e.g., gaming, training) where
the ability to physically move through expansive space is desired but limited.
In those situations, vection could potentially act as a proxy for physical self-
motion, allowing investigators to address questions related to self-motion that
are otherwise not accessible. As such, it is important to gain a better under-
standing of how to create a compelling and embodied sensation of vection,
including how to leverage multisensory contributions to vection under con-
straints of space, cost, or technical complexity, while also considering safety.
Examples include virtual or mixed-reality gaming, entertainment (e.g., iMax
theaters, theme parks), teleoperations, architectural walk-throughs, and vir-
tual travel. Specifically in the context of simulation and VR technologies,
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vection has been shown to be positively correlated with the sensations of ‘pres-
ence’ (the feeling of ‘being there’ in a virtual environment; Heeter, 1992) and
‘involvement’, both aspects that are typically desirable in these applications
(Freeman et al., 2000; IJsselsteijn et al., 2001; Palmisano, 1996; Prothero
et al., 1995; Riecke and Schulte-Pelkum, 2015; Riecke et al., 2004, 2006a).
Lastly, there is also evidence that vection is not just a mere epiphenomenon
when using VR, but can have functional benefits by facilitating perspec-
tive switches and improving spatial orientation in VR users (Palmisano et
al., 2015; Riecke et al., 2012, 2015a). Thus, better understanding how mul-
tisensory cues contribute to vection will help to design and develop more
compelling, realistic, and immersive VR experiences, which we will discuss
below. Table 1 summarizes some of the main design considerations on how to
enhance vection in self-motion applications such as VR and other immersive
media, which will be discussed in more detail in the next section.

8.3. Design Consideration on How to Enhance Vection

Based on the present literature review, it is clear that adding congruent and
semantically associated spatialized auditory and tactile cues has the poten-
tial to significantly enhance the user’s experience, for example in VR, and the
sensation of vection in particular. These additional sensory cues can often be
provided by cost-effective means requiring relatively simple and affordable
hardware (e.g., headphones and vibrotactors). Thus, it might be worth con-
sidering adding spatialized sound and vibrations to a variety of applications
that include simulated observer movements, such as VR, immersive gaming,
telepresence, and telerobotics, whenever an increased sense of self-motion in
these applications is desired. While adding tactile flow (vibrations sweeping
along a vibrotactor matrix) to the seat while viewing optic-flow stimuli has
been shown to increase perceived forward velocity, more research is needed to
determine if it can also increase vection (Amemiya et al., 2013a, b, 2016).
There is also research suggesting that using force feedback devices might
also be a promising approach to further enhance vection (Ouarti et al., 2014),
although further research is needed.

Although biomechanical cues from stepping along circular treadmills can
both induce compelling vection by themselves and enhance vection in mul-
timodal contexts, they require more cumbersome hardware that is not com-
monly available, limiting the widespread utility. Furthermore, it does not seem
possible to reliably induce or enhance linear vection using linear or omnidirec-
tional treadmills as discussed earlier, and walking-in-place methods (without
a linear treadmill) do not seem sufficient to enhance vection (Kruijff et al.,
2016).

While it is possible to induce and enhance vection using direct vestibular
stimulation (e.g., through galvanic or caloric stimulation), these methods do
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not seem very promising for most applications as they introduce undesirable
side-effects, and the illusory self-motion sensations they can elicit are limited
(Lawson and Riecke, 2014). Passive motion cueing can be provided using a
variety of motion platforms, and even relatively small physical motions (using
more affordable setups such as motorized chairs) can enhance vection, mak-
ing them promising for some applications. User-powered active motion cueing
approaches such as active leaning-based or human-joystick-based locomotion
interfaces come at little if any additional cost and yet have shown to be effec-
tive in enhancing vection. They provide a more embodied and hands-free loco-
motion interface compared to the mainstream hand-held controllers, while at
the same time being safer and less complex than motorized motion platforms.
However, these interfaces need to be carefully designed to be effective: Ear-
lier seated leaning-based interfaces (Swivel Chair and NaviChair) that tracked
chair motions to control VR locomotion (Hashemian and Riecke, 2017; Kitson
et al., 2017) did not find any significant vection facilitation when compared to
handheld controllers. The Gyroxus gaming chair could enhance vection, but
only if participants are moved passively rather than engaging in active control
of the chair (Feuereissen, 2013; Riecke and Feuereissen, 2012). More recent
leaning-based interfaces such as HeadJoystick or NaviBoard, however, pro-
vided consistent vection enhancement both for ground-based VR locomotion
when seated (Hashemian et al., 2021; Riecke et al., 2021) or standing, as well
as for 3D locomotion (flying) (Adhikari et al., 2021; Hashemian et al., 2020).

Finally, multisensory cues can be utilized to contribute to cognitive fac-
tors related to perceived ‘movability’ (Riecke and Schulte-Pelkum, 2015), for
example, by seating participants on a potentially movable chair, platform, or
vehicle and demonstrating (some) of its physical movement capabilities. This
strategy of ‘priming the ability to move’ is common practice in many theme
parks and arcades. This strategy may also be particularly helpful when it is
difficult to induce vection purely through sensory stimulation, for example,
for auditory vection which is typically weak (Lackner, 1977; Larsson et al.,
2004; Väljamäe, 2007) or when the visual field of view is small (Andersen
and Braunstein, 1985). This approach has been shown to enhance visual linear
vection in depth in children (Lepecq et al., 1995), visual elevator (up–down)
oscillatory vection in adults (Wright et al., 2006), visual roll vection in weight-
lessness (Young and Shelhamer, 1990; Young et al., 1983), auditory circular
yaw vection (Riecke, 2011; Riecke et al., 2009b), and visual circular yaw vec-
tion in some studies (D’Amour et al., 2021) but not others (Riecke, 2011;
Schulte-Pelkum, 2007; Schulte-Pelkum et al., 2004). However, more research
is needed to better understand and disambiguate these different sensory and
cognitive factors and how they interact.
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8.4. Vection and Motion Sickness

Vection has been historically associated with the occurrence of visually
induced motion sickness (VIMS), a sensation similar to traditional motion
sickness that is primarily driven by stimulation of the visual system (Cha et al.,
2021; Keshavarz et al., 2014a). A sensory conflict between the visual, vestibu-
lar, and proprioceptive senses is often considered one of the main causes of
VIMS (Oman, 1990; Reason and Brand, 1975), along with challenges to pos-
tural control (Stoffregen and Riccio, 1991) and eye movements (Ebenholtz et
al., 1994). According to the sensory conflict theory, the information provided
by these systems is not in accordance with each other; for instance, the visual
system may indicate self-motion, whereas the vestibular and proprioceptive
systems indicate stasis (see Keshavarz et al., 2015, for a discussion). The rela-
tionship between vection and VIMS is complicated and far from being fully
understood (see Keshavarz et al., 2015 for an overview). It has been argued
that vection is not sufficient to cause VIMS (Keshavarz et al., 2015; Lawson,
2014), but that VIMS is a by-product when the brain processes conflicting sen-
sory self-motion information that might be ambiguous. Following this line of
reasoning, it seems plausible that maximizing vection by stimulation of mul-
tiple senses may help to reduce the level of ambiguity, which may reduce or
prevent the occurrence of VIMS under some conditions. The (un)predictability
of self-motion might also play an important role, in that motion sickness tends
to be higher when we do not experience control over our self-motion (e.g,.
when being a passenger vs a driver) or self-motion is otherwise unexpected
or unpredictable (Dong et al., 2011; Rolnick and Lubow, 1991; Teixeira et
al., 2022). To date, only very few studies have investigated how multisensory
cues may affect VIMS and the results are mixed. For instance, adding audi-
tory cues did not reduce VIMS when added to a visual stimulus (Keshavarz et
al., 2014b), but providing multisensory cues reduced the duration of VIMS-
related aftereffects in a driving simulation study (Keshavarz et al., 2018).
Thus, the hypothesis that increasing vection via multisensory stimulation to
reduce VIMS needs to be further empirically tested in future studies.

9. Summary and Future Directions

Our everyday experiences of our world are inherently multisensory, includ-
ing our perception of self-motion through space. With the increasing usage
of VR and mixed-reality technologies, effectively utilizing multisensory stim-
ulation may help provide more natural and compelling sensations of being
in and moving through space, which could in turn affect perception and per-
formance. This review illustrates how combining multiple, congruent sensory
inputs has a strong potential to increase vection. Interestingly, this multisen-
sory vection enhancement is observed not only when the added/manipulated
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sensory cues are able to induce vection individually (e.g., biomechanical and
some auditory cues), but also when they are by themselves not able to induce
vection when presented alone (e.g., vibrations and some tactile and auditory
cues). In general, multimodal vection facilitation is strongest when added sen-
sory cues are congruent with the other vection-inducing stimuli with respect
to both temporal aspects (e.g., synchronized multimodal stimulus onset) and
spatial aspects (e.g., movement direction and to a lesser degree movement
amplitude and speed), as well as with learned semantic associations (e.g., the
learned associations match the self-motion scenario and metaphors, and the
multisensory context is familiar).

It is important to note that the studies reviewed vary significantly across
many factors, thereby limiting the ability to cross-compare the effects of dif-
ferent sensory manipulations. The extent to which multisensory stimulation
contributes to vection likely varies due to factors such as the characteristics
of the stimulus (e.g., frequency, intensity, realism, field size, reliability), the
nature of the technology (hardware/software), the extent to which multiple
sensory inputs are spatially/temporally/semantically congruent and redundant,
the nature of the task, the outcome measures of interest, and inter-individual
differences (e.g., age, biological sex, experience). As such, there is a need
to better report, measure, and evaluate these factors within multisensory vec-
tion studies to establish a comprehensive understanding of their individual and
combined effects. We also recommend that studies begin to integrate comple-
mentary measures of vection and to report the presence or absence of adverse
side-effects alongside vection-related outcomes (Berti and Keshavarz, 2020;
Kooijman, Berti, et al., 2023a; Palmisano et al., 2015; Warren and Wertheim,
1990).

Note

1. We envision the online version of this table to be a living and regu-
larly updated representation of the current state of the multimodal vec-
tion literature, and will provide opportunities for authors to submit their
accepted/published work through an online form if it is not already
included in the database.

Supplementary Material

Supplementary material is available online at:
https://doi.org/10.6084/m9.figshare.24289216
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