

Fig. 1. HeadJoystick motion model: (Left) Tracker calibration process, (Middle) Setting zero-point when starting flight, (Right) Flight motion model. Position of Tracker (T), HMD (H), above the head rotation center in the neck (N), Center of chair backrest pitch rotation (O) are annotated in the figure, where T_0 , N_0 , and H_0 indicates the initial positions of tracker, head rotation center, and HMD when the flight starts. O', T'_0 , and N'_0 are the estimated position for the backrest rotation center, initial position of the tracker, and head rotation center during flight.

1 APPENDIX

1.1 Motion Control Model

LeaningTranslation interface does not use a swivel chair, and thus has a *static* zero-point (initial head position) when the flight begins. However, because the HeadJoystick has a *dynamic* zero-point, it uses a tracker to track the backrest movements of a swivel chair including its yaw or pitch rotations, to update the zero-point relative to the center of the chair backrest pitch rotations. We call this the *chair center*, indicated as O in Figure 1. Tracking the chair center requires a tracker to be attached to the chair, and a calibration process is needed to calculate the chair center relative to the tracker position and orientation. Our calculations use orientation as (*pitch*, *yaw*, *roll*) and the position in both Cartesian (*x*, *y*, *z*) and spherical (*r*, θ , ϕ) coordinates to make the equations easier to understand.

Tracker Calibration: The tracker has to be calibrated after the tracker is attached to the chair and before the flight starts. The user does not need to repeat the calibration process as long as the tracker remains attached to the chair and does not move with respect to the chair. As shown in Figure 1-left, the calibration process requires the user to lean back to change the backrest pitch. We recorded four different positions of the tracker - called T_1, T_2, T_3, T_4 , with at least 2.5° pitch differences to calculate the chair pitch rotation center (O). Considering the tracker (T) has a constant distance from the chair center, we used the W.H. Beyer approach, which finds the center of an sphere using any four points on it by solving the below equation [1]:

$$\det \begin{vmatrix} (x_O^2 + y_O^2 + z_O^2) & x_O & y_O & z_O & 1 \\ (x_{T_1}^2 + y_{T_1}^2 + z_{T_1}^2) & x_{T_1} & y_{T_1} & z_{T_1} & 1 \\ (x_{T_2}^2 + y_{T_2}^2 + z_{T_2}^2) & x_{T_2} & y_{T_2} & z_{T_2} & 1 \\ (x_{T_3}^2 + y_{T_3}^2 + z_{T_3}^2) & x_{T_3} & y_{T_3} & z_{T_3} & 1 \\ (x_{T_4}^2 + y_{T_4}^2 + z_{T_4}^2) & x_{T_4} & y_{T_4} & z_{T_4} & 1 \end{vmatrix} = 0$$

Set Zero-Point: To start the flight, we asked users to sit comfortably and centered on the chair. Then we asked them to gently lean backwards until they touch the backrest, without pushing it backwards, after which they press a button to set the zero-point before starting the flight. This way, the user gets physical feedback for their zero-point when their back touches the backrest during flight. Pilot studies showed that this makes it easier than using visual cues to stop the flight. To ensure that users can rotate their head freely without initiating a virtual translation, we did not use the initial position of the HMD (H_0) as the zero-point, but instead calculated through pilot testing the approximate rotation center of the head (N_0) as indicate in Figure 1-middle. This allows the user to rotate their head left/right or up/down to view the VE without affecting their flight direction or speed. Our pilot tests showed that Vive HMD has an average of 0.13m horizontal distance with the typical head rotation center, for adults i.e., $H_0 N_0^{'}$. We also calculated the head rotation center distance from tracker (T_0) , so we could later update the head rotation center position based on the tracker movements:

$$H_0 N'_0(r, \theta, \phi) = (0.13m, yaw_{H_0}, pitch_{H_0})$$
$$N_0 = H_0 + \overrightarrow{H_0 N_0}$$
$$\overrightarrow{T_0 N_0} = N_0 - T_0$$
$$\overrightarrow{OT_0} = T_0 - O$$

Flight Motion: As depicted in Figure 1-right, we measured the position of the tracker (T) during flight, to estimate the position of the chair center (O'), the initial position of the tracker (T'_0), and the initial user's head rotation center

$$\Delta pitch = pitch_T - pitch_{T_0}$$

$$\overrightarrow{O'T}(r, \theta, \phi) = (r_{\overrightarrow{OT_0}}, \theta_{\overrightarrow{OT_0}}, \phi_{\overrightarrow{OT_0}} + \Delta pitch)$$

$$O' = T - \overrightarrow{O'T}$$

$$T'_O = O' + \overrightarrow{OT_0}$$

$$N'_0 = T'_0 + \overrightarrow{T_0N_0}$$

As the next step, we predicted the head rotation center position (N) using the HMD position (H), yaw (yaw_H) and pitch $(pitch_H)$. Then we found the head rotation center displacement (D) using its initial position (N'_0) and the current position (N). To calculate the speed, we then multiplied the displacement to a sensitivity coefficient of α , which we determined as 8 in our pilot testings. Moreover, because users usually have lower range for their vertical head movement compared to their horizontal head movement, we multiplied the vertical sensitivity to a higher sensitivity coefficient (β) determined as 3 based on our pilot testings. This makes the overall vertical sensitivity coefficient as 24 (3 * 8).

$$\overrightarrow{\mathrm{HN}}(r,\theta,\phi) = (0.13m, yaw_H, pitch_H)$$
$$N = H + \overrightarrow{\mathrm{HN}}$$
$$\vec{D} = N - N'_0$$
$$\vec{D} = \vec{D} * \alpha$$
$$y_{\vec{D}} = y_{\vec{D}} * \beta$$

Then, we calculated the user's simulated speed (\vec{S}) using an exponential transfer function. Pilot testing showed us that using 1.53 as the exponential factor makes it easier for the user to find the zero-point and control their movements accurately in lower speeds. Finally, we apply the speed limit (v_{max}) , because our pilot testings showed that high speeds could make the user dizzy. We used (\vec{S}) as the speed of moving the user's view-point in study 1.

$$\vec{S}(r,\theta,\phi) = (\min(r_D^{1.53}, v_{max}), \theta_{\vec{D}}, \phi_{\vec{D}})$$

Smooth Acceleration: To prevent abrupt speed changes and reduce the motion sickness, we smoothly applied the simulated speed (\vec{S}) to the current simulated speed of the user (\vec{K}) using SmoothStep function in Unity with an acceleration smoothness factor (δ) determined as 0.12 based on our pilot testings.

$$\begin{split} x_{\vec{K}} &= Mathf.SmoothStep(x_{\vec{K}}, x_{\vec{S}}, \delta) \\ y_{\vec{K}} &= Mathf.SmoothStep(y_{\vec{K}}, y_{\vec{S}}, \delta) \\ z_{\vec{K}} &= Mathf.SmoothStep(z_{\vec{K}}, z_{\vec{S}}, \delta) \end{split}$$

REFERENCES

- W. H. Beyer, CRC Standard Mathematical Tables, 28th ed. CRC Press, 1987.
- [2] D. A. Bowman, E. T. Davis, L. F. Hodges, and A. N. Badre, "Maintaining Spatial Orientation during Travel in an Immersive Virtual Environment," *Presence: Teleoperators and Virtual Environments*, vol. 8, no. 6, pp. 618–631, Dec. 1999.

 TABLE 1

 2D (ground-based) leaning-based interfaces with full 360° physical rotation and their significant differences compared to handheld interfaces such as gamepad and touchpad. The last row shows the current study and its results to facilitate direct comparison.

Body Posture	Interface Name	Translation Input	Task	Compared with	Significant Advantages	Significant Disadvantages
Standing	Wii-Leaning [2]	Weight Shifting	Pointing	Joystick	Lower latency, turning error	
Stanuing	wii-Leaning [2]	weight Shifting	Politiling	WIP		Higher turning error and latency
Standing	LAS-WIP [58]	Torso Leaning angle	Follow-the-path	WIP	Higher Preference	
Standing	Joyman [4]	Torso Leaning angle	Reach-the-target	Joystick	Higher fun, presence, and rotation realism	Lower speed, accuracy, intuitiveness, and higher fatigue
Standing	Naviboard [3]	HMD position	Navigational	Controller	Higher search speed, lower taskload, travelled	
Standing	Nuvisouru [5]		search	controller	distance, and motion sickness	
Seated	NaviChair [3]	HMD Position	Navigational search	Controller	Higher search speed, with lower travelled distance	
				Real-Rotation		higher distance error, lower precision
Seated	NaviChair [7]	Weight Shifting	Follow-the-avatar	Joystick		higher distance error, lower precision, comfort, long-term use, usability, higher usability problems
Seated	Swivel-Chair [7]	Chair Backrest Tilt and HMD Position	Follow-the-avatar	Joystick		Lower precise control
				Joystick	Higher speed, lower finger & arm fatigue	Higher spine fatigue
Seated	Leaning [13]	HMD position	Reach-the-taregt	Teleport		Lower speed, usability, comfort, ease of use, higher motion sickness
Seated	Head Joystick [Current Study]	Position of the head rotation center	Reach-the-target, Follow-the-path, and racing	Real-Rotation	Lower motion sickness and higher speed, accuracy, precision, throughput, enjoyment, preference, vection intensity, immersion, usability, ease of use, ease of learning, presence, long-term use, daily use, and lower task-load	

 TABLE 2

 Overview of our suggested factors to evaluate a locomotion interface, including suggested DVs and how to measure them. Factors that go beyond Bowman's effectiveness factors [2] are highlighted in green. "I" stands for introspective measures and "B" for behavioral measures.

	Factor/Construct	Dependent Variable	Research Instrument/measure							
-	Ease of learning /	I: Rating for ease of learning	"How easy was it to learn using the interface for the first time?"							
3)	learning effects	B: Performance improvements over time	Comparing the overall performance improvement of interfaces over repeated trials of using each interface based on the linear regression							
e (B)	Casa of Use	I: Taskload	NASA-Task load index questionnaire [73]							
anc	Ease of Use	I: Rating for ease of use	"How easy was it to use the interface?"							
E	User Comfort	I: Rated potential for long-term use	"I could imagine using the interface for longer time than the study task"							
erfo	User Comfort	I: Rated potential for daily use	"I could imagine using the interface in daily applications frequently"							
d Pe	Overall Usablity	I: Rating for overall usability	"Overall usability of the interface"							
ano	Speed	B: Task completion Time	Average time to complete the task							
Usability (I) and Performance	Accuracy	B: Proximity to the desired target or path	Average absolute disrance error from the desired target or the path							
Usab	Precision	B: The ability of technique for fine movements [68]	Average number of missed targets or crashes to unwanted objects							
	Overall norfermanes	B: Performance Score	Defined per task to combine its different performance measures							
	Overall performance	B: Throughput [21], [22]	Ratio of effective index of difficulty over movement time							
	Presence	I: Spatial presence	SUS Questionnaire of spatial presence [74]							
JCe	Presence	I: immersion	"I felt immersed in the virtual scence (captivated by the task)"							
Jser Experience	Self-motion perception	I: Vection intensity	"I had a strong sensation of self-motion with the interface"							
ы Б	Motrion sickness	I: Motion Sickness	Simulator Sickness Questionnaire (SSQ) [75]							
Use	Overall user	I: Enjoyment	"I enjoyed doing the task using this interface?"							
	experience	I: Overall preference	"Overall preference ratings"							

TABLE 3

Study 1: t-test results for all dependent variables: Significant effects $(p \leq 5\%)$ are highlighted in green, and were always in the direction of enhanced user experiences for HeadJoystick over Controller. The effect size *Cohen's d* indicates the magnitude of the effect i.e., the difference between two means expressed in standard deviations.

	t(23)	р	Cohen's d								
Enjoyment	30.8	<.001	.572								
Preference	26.9	<.001	.539								
Immersion	11.6	.003	.335								
Vection Intensity	15.4	<.001	.402								
Long-Term Use	2.07	.163	.083								
Daily Use	5.13	.03	.182								
Overall Usability	24.7	<.001	.518								
Presence (SUS)	35.2	<.001	.605								
Ease of Use	38.6	<.001	.627								
Ease of Learning	27.4	<.001	.543								
NASA-TLX	21.9	<.001	.605								
Post-Pre Motion Sickness	.285	.6	.012								
Reach-the-Target Average Time	69.6	<.001	.865								
Reach-the-Target Minmum Size	51.6	<.001	.802								
Reach-the-Target Overall Score	56.8	<.001	.712								
Reach-the-Target Error Rate	43.4	<.001	.653								
Reach-the-Target Througput	54.7	<.001	.362								
Follow-the-Path Average Velocity	66.2	<.001	.742								
Follow-the-Path Distance Error	68.5	<.001	.944								
Follow-the-Path Collisions	5.71	.030	.456								
Follow-the-Path Overall Score	16.1	<.001	.411								
Racing Average Overtaking Time	14.5	.001	.638								
Racing Car Crashes	5.67	.030	.415								
Racing Overall Score	29.5	<.001	.562								

TABLE 4

Study 2: t-test results for all user experience and usability measures: Significant effects ($p \le 5\%$) are highlighted in green, and were always in the direction of enhanced user experiences for HeadJoystick over Controller. The effect size *Cohen's d* indicates the magnitude of effect i.e., the difference between two means expressed in standard

deviations.											
	t(17)	р	Cohen's d								
Enjoyment	32.1	<.001	.654								
Preference	18.5	<.001	.521								
Immersion	13.8	.002	.448								
Vection Intensity	132	<.001	.886								
Long-Term Use	7.33	.015	.301								
Daily Use	2.22	.155	.115								
Overall Usability	27.2	<.001	.615								
Presence (SUS)	41.0	<.001	.707								
Ease of Use	18.8	<.001	.525								
Ease of Learning	13.3	.002	.439								
NASA-TLX	21.9	<.001	.452								
Pre-Post Motion Sickness	8.90	.008	.334								

TABLE 5

Study 3: Wilcoxon signed-ranked test results for user experience and usability measures. Significant effects ($p \le 5\%$) are highlighted in green, and were always in the direction of enhanced user experiences for HeadJoystick followed by HeadJoystick+brake and then Controller, as illustrated in Figure ??

Measures		oller vs loystick		tick+Brake Joystick	Controller vs HeadJoystick+Brake			
	Z	p	Z	р	Z	р		
Enjoyment (%)	100	0.003	48.0	0.030	92.0	0.013		
Preference (%)	97.5	0.005	84.5	0.043	99.0	0.025		
Immersion (%)	78.0	0.002	36.0	0.011	36.0	0.011		
SUS Presence (%)	120	0.001	88.0	0.003	114	0.002		
Long-Term Use (%)	63.5	0.489	58.5	0.360	40.5	0.906		
Overall Usability (%)	61.0	0.130	48.0	0.320	65.5	0.161		
Ease of Use (%)	89.0	0.021	37.5	0.073	74.5	0.166		
Ease of Learning (%)	44.5	0.336	67.0	0.132	59.0	0.683		
Motion Sickness (%)	20.0	0.779	34.0	0.929	41.0	0.477		
Task Difficulty (%)	4.50	< 0.001	31.0	0.177	3.00	<0.001		
Missed-Targets (#)	1.00	< 0.001	12.0	0.002	7.00	0.001		
Error Rate (%)	1.00	< 0.001	6.00	0.001	5.00	<0.001		

Measures	HeadJoystick		Controller		Interface				Trial		Interface * Trial		
	М	SD	Μ	SD	F(1,17)	р	η_p^2	F(1,17)	р	η_p^2	F(1,17)	р	η_p^2
Motion Sickness (%)	5.63	7.48	14.8	15.5	7.13	0.016	0.005	39.9	< 0.001	0.243	14.3	0.002	0.103
Task Difficulty (%)	29.2	13.6	49.6	14.2	64.3	< 0.001	0.201	670	< 0.001	0.241	2.68	0.018	0.039
Time to reach a target (s)	4.30	1.52	5.59	1.94	99.0	< 0.001	0.187	61.2	< 0.001	0.187	0.736	0.372	0.038
Minimum Target Size (cm)	2.61	1.80	4.03	2.26	101	< 0.001	0.110	80.3	< 0.001	0.173	1.83	0.087	0.041
Overall Score (K)	7.45	4.48	4.08	2.21	86.2	< 0.001	0.108	109	< 0.001	0.214	10.8	0.004	0.082
Reached Targets (#)	15.0	3.79	11.7	3.12	18.2	< 0.001	0.118	45.1	< 0.001	0.241	14.6	0.002	0.093
Missed targets (#)	1.65	1.56	7.57	4.43	36.0	< 0.001	0.202	22.0	< 0.001	0.134	8.04	0.005	0.054
Error Rate (%)	9.06	7.14	35.6	14.1	241	< 0.001	0.250	80.3	< 0.001	0.058	2.60	0.016	0.064
Throughput	1.96	1.01	1.48	0.795	20.0	< 0.001	0.002	80.3	< 0.001	0.029	2.57	0.017	0.064

TABLE 6
Study 2 Statistical analysis for per-trial data, with significant effects shown in green. Significant main effects of interface and interface-trial
interactions were always in the direction of enhanced user experience and performance for HeadJoystick versus Controller.

 TABLE 7

 Study 3 Statistical analysis for per-trial data, with significant effects shown in green. Significant main effects of interface and interface-trial interactions were always in the direction of enhanced user experience and performance for HeadJoystick followed by HeadJoystick+Brake and then Controller, and performance improvement over the course of the three trials per interface, as illustrated in Figure ??.

Measures	HeadJoystick		HeadJoystick+Brake		Controller		Interface			Trial			Interface * Trial		
Measures	М	SD	М	SD	М	SD	F(1,17)	р	η_p^2	F(1,17)	p	η_p^2	F(1,17)	р	η_p^2
Overall Score (K)	10.4	2.37	8.30	2.59	5.15	2.05	40.4	< 0.001	0.704	82.5	< 0.001	0.829	5.25	0.001	0.236
Reached Targets (#)	18.6	3.31	15.6	3.70	11.1	2.89	41.2	< 0.001	0.708	80.7	< 0.001	0.826	5.92	< 0.001	0.258
Average Time (s)	6.76	1.25	8.57	1.98	12.0	3.34	31.3	< 0.001	0.648	42.6	< 0.001	0.715	4.61	0.008	0.213
Throughput	1.03	0.22	0.805	0.210	0.532	0.159	78.8	< 0.001	0.822	49.8	< 0.001	0.746	1.88	0.125	0.099