
DOI: 10.1111/j.1467-8659.2012.02097.x COMPUTER GRAPHICS forum
Volume 31 (2012), number 6 pp. 1810–1822

Efficiently Simulating the Bokeh of Polygonal Apertures
in a Post-Process Depth of Field Shader

L. McIntosh, B. E. Riecke and S. DiPaola

School of Interactive Arts and Technology, Simon Fraser University, Vancouver, Canada
{lmcintos, ber1, sdipaola}@sfu.ca

Abstract
The effect of aperture shape on an image, known in photography as ‘bokeh’, is an important characteristic of
depth of field in real-world cameras. However, most real-time depth of field techniques produce Gaussian bokeh
rather than the circular or polygonal bokeh that is almost universal in real-world cameras. ‘Scattering’ (i.e.
point-splatting) techniques provide a flexible way to model any aperture shape, but tend to have prohibitively slow
performance, and require geometry-shaders or significant engine changes to implement. This paper shows that
simple post-process ‘gathering’ depth of field shaders can be easily extended to simulate certain bokeh effects.
Specifically we show that it is possible to efficiently model the bokeh effects of square, hexagonal and octagonal
apertures using a novel separable filtering approach. Performance data from a video game engine test demonstrates
that our shaders attain much better frame rates than a naive non-separable approach.

Keywords: computer graphics, rendering, real-time, shaders, depth of field

ACM CCS: I.3.7[Computer Graphics]: Three-Dimensional Graphics and Realism: Colour; Shading; Shadowing
and Texture

1. Introduction

In real-world cameras, precise focus can only be achieved for
objects at a specific distance from the lens. Objects nearer to
or farther from the lens than this distance are defocused and
produce progressively larger blurred spots known as Circles
of Confusion (CoC), on the camera’s image sensor. This ef-
fect, called ‘depth of field’, provides cues about scene depth
to viewers, and has become an important tool in cinematog-
raphy where it is often used to draw attention to particular
parts of a scene [Mon00].

As video games increase in narrative and graphical sophis-
tication, many are attempting to emulate this cinematic effect
in real time. Unfortunately, most real-time depth of field im-
plementations fail to fully consider the effect of ‘bokeh’ on
the image (see Figure 1). Bokeh refers to the appearance
of the CoC in the defocued areas of an image, and is most
clearly revealed by small bright defocused points of light.
Many aspects of a camera’s design contribute to bokeh, but
the most significant aspect is usually the shape of the aperture

[Mer97]. Lens effects like spherical and chromatic aberration
also contribute significantly to bokeh, but in this paper we
concern ourselves solely with the effect of aperture shape.

This paper presents a novel approach that applies sepa-
rable filtering to the problem of efficiently simulating the
bokeh of various aperture shapes. Section 2 reviews some
previously published depth of field techniques, Section 3
presents a ‘naive’ non-separable approach to bokeh as moti-
vation, Section 4 presents our separable bokeh technique and
Section 5 presents the results of a performance test that com-
pares the efficiency of our approach to the naive one.

2. Background and Related Work

Beginning with the work of Potmesil and Chakravarty
[PC81], there has been substantial research into various tech-
niques for adding depth of field effects to computer graphics.
Demers [Dem04], organizes depth of field techniques into
five categories:

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics
Association and Blackwell Publishing Ltd. Published by
Blackwell Publishing, 9600 Garsington Road, Oxford OX4
2DQ, UK and 350 Main Street, Malden, MA 02148, USA. 1810

L. McIntosh et al. / Efficiently Simulating Bokeh 1811

Figure 1: These high dynamic range (HDR) photographs
have been processed by our separable bokeh technique
to simulate depth of field (a constant scene depth was
assumed). (a) Demonstrates the bokeh of a hexagonal
aperture, (b) and (c) simulate the bokeh of octago-
nal apertures. (HDR photos courtesy of Mark Fairchild:
http://www.cis.rit.edu/fairchild/).

• Distributing traced rays across the surface of a lens

• Rendering from multiple cameras (accumulation-buffer)

• Rendering and compositing multiple layers

• Forward-mapped (scattering) z-buffer techniques

• Reverse-mapped (gathering) z-buffer techniques

In general, ray tracing and accumulation-buffer techniques
remain too computationally expensive to be executed with
acceptable results in real time. Compositing techniques are
feasible for real-time applications and are becoming increas-
ingly popular in the computer graphics literature [KLO06,
KS07, LKC08, LES09, LES10]. These approaches can pro-
duce quite realistic results, with proper partial occlusion and
other difficult issues addressed. The layered rendering re-
quired by these techniques can require significant changes
to existing graphics engines to implement, however, and for
lower end hardware they remain computationally expensive.
For these reasons, depth of field techniques for real-time
applications remain largely centred around z-buffer (post-
process) techniques.

Forward-mapped (scattering) z-buffer techniques—
sometimes called ‘point splatting’ techniques—work by dis-
tributing each pixel’s colour to neighbouring pixels. A colour
map and a depth map (i.e. z-buffer) are produced for the
scene, and the diameter of the CoC is calculated for each
pixel based on the depth map and some focus parameters.
Finally, each pixel is blended into the frame buffer as a cir-
cle (or any desired aperture shape) with a diameter equal to
the CoC. Typically this is accomplished by rendering tex-
tured sprites, centred at the location of each original pixel.
Using a textured sprite has the advantage that any desired
aperture shape can be modelled by simply changing the tex-
ture used. Depth-sorting can be used to ensure each sprite
only affects pixels that are farther from the camera than itself
(to prevent blurry backgrounds from affecting focused fore-
grounds). Unfortunately, such forward-mapped techniques
are not very amenable to execution in real time as they re-
quire a large number of sprites to be rendered every frame. In
addition, they require the costly depth-sorting of these sprites
[LKC08].

Reverse-mapped (gathering) z-buffer techniques are sim-
ilar in concept to forward-mapped techniques, but with one
significant difference. Rather than each pixel spreading its
colour value to neighbouring pixels (by way of rendering
a sprite), each pixel explicitly samples the colour values of
its neighbours to determine its own value. This category of
techniques is generally much better suited to execution on
current graphics hardware, as it avoids the costly processing
of millions of sprites and takes advantage of fast hardware
texture lookups. For this reason, many modern video games
implementing depth of field use a technique from this cate-
gory (for example, Call of Duty 4: Modern Warfare (Infinity
Ward, 2007) uses one [Ham07]). In general, realistic bokeh
effects (like circular or polygonal apertures) are not effi-
ciently modelled with reverse-mapped z-buffer techniques.
Our approach, and a similar one developed concurrently at
DICE [WB11] (published while this paper was in review),
appear to be the first attempts to do so.

Riguer et al. [RTI03] and Scheuermann [Sch04] pro-
vide good introductions to the conventional reverse-mapped

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

1812 L. McIntosh et al. / Efficiently Simulating Bokeh

Figure 2: In this comparison, intensity leakage or ‘pixel
bleeding’ is visible in (a) around the focused foreground
object. However, in (b) where an intensity leakage solution
[RTI03] has been applied, the effect is greatly reduced.

z-buffer techniques that do not consider bokeh. Riguer et al.
describe two separate reverse-mapped z-buffer techniques,
and Scheuermann essentially combines them into a hybrid
technique that overcomes some limitations of both. Using
Scheuermann’s technique, one starts by rendering a CoC
map into the alpha channel of the colour map. This colour
map is then downsampled to 1/4th of its original dimensions
(1/16th the number of pixels), and a two-pass separable Gaus-
sian blur is applied to it. In a final pass, the desired CoC is
read from the alpha channel of the original colour map, and a
filter with an 8-sample stochastic kernel (of the CoC size) is
used to sample from both the original and the downsampled
colour maps. These two samples are then linearly interpolated
based on the CoC size. The result of this interpolation is that
samples with a large CoC effectively come from the blurred
colour map, although samples with a small CoC effectively
come from the original colour map. The interpolated samples
are then combined in a weighted average to determine the
final value of each pixel.

2.1. Common post-processing artefacts

Scheuermann’s depth of field technique, along with many
similar reverse-mapped z-buffer techniques, suffers from a
number of graphical artefacts that reduce the realism of
the final image. Our technique specifically addresses one of
these—lack of realistic bokeh—but we briefly discuss them
all as our technique exhibits many of them.

The first artefact—and one that Riguer et al. [RTI03]
specifically attempt to solve in their technique—is called
intensity leakage (or pixel bleeding). Focused foreground
objects appear to ‘leak’ onto blurry backgrounds (see
Figure2), because the blurry pixels in the background have
large CoC diameters and sample some part of their value
from pixels of the focused foreground object. Riguer et al.
and Scheuermann address this problem by carefully weight-
ing each of the samples in the average. Samples that have a

Figure 3: In this image, produced by our separable bokeh
technique, the defocused foreground object’s silhouette is
too sharp against the focused tree branch behind it. Some
fading occurs inside the silhouette (b), but the silhouette will
not realistically spread out over its borders onto the tree
branch (a).

significantly smaller CoC (those that are more focused) and
are closer to the camera than the centre sample are weighted
much lower than normal. Our technique includes this
solution.

Another artefact inherent to post-processing depth of field
techniques is a lack of partial occlusion. In images pro-
duced by real cameras, the edges of blurry foreground objects
spread out smoothly and appear semi-transparent over top of
focused objects behind them. In the images produced by most
post-process gathering depth of field techniques however,
blurry foreground objects remain opaque, revealing no de-
tails behind them. Solutions to this problem typically involve
rendering multiple layers. In general, post-process gather-
ing techniques, including ours, do not attempt to solve this
problem. In most applications the issue can be side-stepped
by simply preventing foreground objects from coming too
near the camera (and thus from becoming excessively blurry,
revealing the artefact).

Another artefact is the appearance of sharp silhouettes on
defocused foreground objects against focused backgrounds
(see Figure3). This occurs because pixels from the focused
background have small CoC and will not sample from
the defocused foreground, and thus the defocused fore-
ground will not appear to spread out over the focused
background. Hammon [Ham07] proposes a simple solu-
tion to this which involves blurring the CoC map itself in
a specific way. Our technique does not specifically address
this problem, though Hammon’s solution could easily be
integrated.

The last common artefact, and the one we specifically at-
tempt to address, is a lack of realistic bokeh—especially
in high dynamic range (HDR) rendering where small bright
defocused points of light tend to reveal the bokeh of the sim-
ulated camera. In real-world cameras, circular and polygonal
apertures are nearly universal. However, in reverse-mapped

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

L. McIntosh et al. / Efficiently Simulating Bokeh 1813

Figure 4: (a) Shows a 2D 127-sample kernel that could be
used to produce a hexagonal bokeh effect. (b) Shows a 2D
120-sample kernel that could be used to produce an octag-
onal bokeh effect. As we demonstrate, this approach suffers
from poor performance because of the large number of sam-
ples necessary.

z-buffer techniques the bokeh is most often Gaussian (as
in [KLO06], [KS07] and [ZCP07]). In contrast, our separa-
ble technique efficiently approximates the bokeh of simple
polygonal apertures—specifically, we demonstrate square,
hexagonal and octagonal apertures, though many others are
possible. Note that we do not attempt to model complex lens
effects such as chromatic or spherical aberrations. For dis-
cussion of a ray tracing technique that can model these sort
of bokeh effects see Wu et al.[WZH*10].

3. A Naive Approach

Before we describe our separable bokeh technique, we first
describe a naive approach as motivation. The most obvious
approach to creating bokeh effects in a gathering depth of
field shader might be to filter the colour map with a carefully
designed variable-size 2D kernel, similar to the 8-sample
stochastic filter used by Scheuermann. Using many samples,
and carefully arranging their positions in the kernel, various
aperture shapes could be modelled. For example, to approx-
imate the bokeh of hexagonal and octagonal apertures, 2D
kernels like those in Figure4 could be used. This approach
produces the desired bokeh effect, and has the advantage that
any conceivable aperture shape can be approximated. Indeed,
it would appear to be a perfect solution. As we will show,
however, the performance of such a shader is poor, and at-
tempting to increase performance using fewer samples leads
inevitably to sampling artefacts.

4. A Separable Approach

Our technique leverages the efficiency of separable filters to
achieve its performance gains. In a nutshell, we begin with
a modified ‘box-blur’ filter, which can simulate the effect
of any parallelogram-shaped aperture (for instance, a square
aperture). To simulate more complex aperture shapes like
hexagons and octagons, we then combine two or more images

produced by different parallelogram-shaped apertures with
an intersection-like (or union-like) operation. For instance,
an octagonal aperture is simulated by combining the results of
two square apertures, one aperture rotated 45 degrees from
the other. A more thorough explanation of the technique
follows. Please refer to the Appendix for a complete code
listing.

4.1. Rendering the CoC map

Similar to the work by Scheuermann [Sch04], our separable
bokeh technique starts by rendering a CoC map into the
alpha channel of the colour map. Storing the CoC map in the
alpha channel of the colour map allows for blurring the CoC
map itself alongside the colour map (we explain the need for
this in Section 4.4). A 16-bit render target is used to hold
HDR lighting information (allowing for bright defocused
highlights) in the RGB channels, as well as precise CoC data
in the alpha channel. The CoC for each pixel is calculated by
the following formula (from the well known thin-lens model),
where c is the diameter of the CoC, A is the diameter of the
aperture, f is the focal length, S1 is the focal distance and S2

is the given pixel’s scene depth, (as read from a depth map):

c = A · |S2 − S1|
S2

· f

S1 − f
.

For storage in the alpha channel, the CoC diameter is then
divided by the height of the virtual ‘image sensor’. Any value
can be used, but for realism we chose 0.024 m (24 mm) in
our shaders—a value taken from the real-world 35 mm full
frame format. We consider this length to represent the max-
imum CoC diameter that could reasonably be captured by
our simulated camera. This division ensures more effective
usage of our full 16-bit render target, and makes the calcu-
lations in later passes more efficient as the CoC diameter is
now expressed as a percentage of the image size (the native
format for texture coordinates in Direct3D and OpenGL).
Finally, the return value is clamped between zero and an ar-
tificially imposed maximum percentage. This is done to pre-
vent excessively large CoC from causing notable sampling
artefacts.

4.2. Parallelogram-shaped apertures

Because all our aperture shapes are based on parallelograms,
we begin with a discussion of them.

Simulating a parallelogram-shaped aperture is mostly a
straightforward application of a ‘box-blur’ filter. A 1D uni-
form kernel is applied in each pass, between passes the kernel
is rotated, and the output of the first pass is provided as input
to the second pass to create a cumulative effect. The major
differences from a separable box-blur filter are:

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

1814 L. McIntosh et al. / Efficiently Simulating Bokeh

Figure 5: In this series, a single bright test point is spread
into a square over two passes. It shows, (a) the original
image, (b) the result of the first pass and (c) the final result of
the second pass. Arrows indicate the direction of the linear
kernel applied in each pass to produce the next image.

• We choose the rotation of the kernel in each pass
to aid the construction of the desired polygonal
shape.

• We use a uniform kernel (i.e. the samples are weighted
evenly) but we ignore those samples that would con-
tribute to intensity leakage.

• We vary the kernel width per-pixel based on the CoC map
read from the alpha channel.

• We make no effort to align sample coordinates to pixel
boundaries or centres.

4.3. Creating sample offsets

To create the sampling offsets, the desired number of samples
per pass must first be decided. Using too few samples may
result in sampling artefacts—especially in areas of the image
with large CoC. Using too many samples will adversely affect
performance. Through experimentation we found that a nice
compromise is about 13 samples per pass, resulting in an
effective 169 samples (13 × 13) after the second pass. Any
number may be used, however.

The offsets are evenly spaced along a straight line 1 unit
in length, and are centred about the origin (0,0). By choos-
ing different orientations for the line, various parallelograms
can be achieved. For instance, a square is made by using
an angle of 0 degrees on the first pass, and 90 degrees on
the second pass (see Figure 5). A ‘diamond’ with acute an-
gles of 45 degrees is made by using an angle of 0 degrees
on the first pass, and 45 degrees on the second pass (see
Figure 6).

To increase shader performance, the sampling offsets for
each filtering pass are pre-calculated once in the applica-
tion code. The offsets are then passed into the shader via
registers upon each pass. Before using these offsets, they
are multiplied in the shader by the desired CoC diameter at
the given pixel to achieve the correct kernel width for that
pixel.

Figure 6: In this series, a single bright test point is spread
into a diamond over two passes. It shows, (a) the original
image, (b) the result of the first pass and (c) the final result
of the second pass.

4.4. Multi-pass filtering

Each filtering pass is started by reading the colour map at the
current pixel (including the alpha channel storing the CoC
map). The depth map is also read at the current pixel.

Next, the sampling is done in a loop. For each sample, the
texture coordinates are calculated by multiplying the sam-
ple offset (calculated earlier) with the desired CoC diameter
stored in the alpha channel of the colour map. This offset is
then added to the current pixel coordinates to get the final
sample coordinates. The colour map and the depth map are
both read at these coordinates, and the results are stored in
local variables.

Still inside the loop, we apply the intensity leakage so-
lution. The sample depth is compared to the current pixel
depth, and the sample CoC is compared to the current pixel
CoC. If the sample depth is less than the current pixel depth
(i.e. it is closer to the camera) and the sample pixel CoC is
less than the current pixel CoC (i.e. it is more focused), then
using the sample would contribute to intensity leakage and
the sample is ignored.

For valid samples, their colour and alpha values are added
to a running total, and a counter is incremented to accumulate
the number of valid samples found.

When all the samples have been made, the loop exits and
the samples are averaged by dividing the running total by the
number of valid samples found. This average is then returned
by the shader.

One should note that we blur both the colour map, and
the CoC map (stored in the alpha channel of the colour map)
during each filtering pass. Though not based in any real
physical process, we have found that blurring the CoC map
in this way helps to reduce sharp edges that otherwise some-
times occur in defocused areas at depth-discontinuities (see
Figure 7). We believe this acts as a less rigorous version of the
more sophisticated CoC map blurring that Hammon [Ham07]
performs.

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

L. McIntosh et al. / Efficiently Simulating Bokeh 1815

Figure 7: This figure compares the effect of blurring (a) and
not blurring (b) the CoC map alongside the colour map in
each filtering pass. Note the sharp edges in (b) along the
edges of the tree branches.

Unlike the work by Riguer et al. [RTI03] and Scheuermann
[Sch04], we do not create a downsampled copy of our colour
map. Instead, all filtering operations are performed on the
full-size colour map. This reduces artefacts, reduces the total
number of passes required (along with the associated perfor-
mance overhead) and simplifies the implementation.

Throughout the multi-pass filtering, we use linear texture
filtering and clamped texture addressing. Linear filtering
(although technically incorrect at depth discontinuities) pro-
vides smoother, less pixelated results than nearest-neighbour
filtering. Clamped addressing provides reasonable sample
extrapolation for pixels near the edges of the image.

4.5. Complex aperture shapes

To simulate more complex aperture shapes, (like hexagons
and octagons), we combine two or more images produced by
different parallelogram-shaped apertures. Conceptually, the
combination can be thought of as a boolean operation, as in
constructive solid geometry. For example, a hexagon can be
created by taking the boolean intersection of two carefully
chosen parallelograms (see Figure 8a). The area common
to both shapes is kept, although other areas are discarded.
Similarly, an octagon can be created by taking the boolean
intersection of two squares (see Figure 8b). A star polygon
can be created by taking the boolean union of two squares
(see Figure 8c). With a little creativity a variety of shapes
can be realized as the boolean intersections and unions of
parallelograms, but for the sake of simplicity, we have chosen
to limit our discussion to just hexagons and octagons.

Unfortunately for our purposes, performing a proper
boolean intersection or union is out of the question. We are,
after all, not actually dealing with individual polygons, but
rather thousands of pixels representing thousands of over-
lapping CoC. It is thus impossible for us to consider any

Figure 8: Hexagons (a), octagons (b) and star polygons
(c) can all be created by taking the boolean intersections or
unions of various parallelograms. With a little creativity, a
great variety of shapes can be realized this way.

two polygons in isolation. There are however, two functions
which when supplied with our images as arguments, will ac-
complish sufficiently similar effects: they are Min(x, y) and
Max(x, y).

The Min(x, y) function returns the lesser (i.e. least bright)
of x and y at every pixel, and thus approximates a boolean
intersection by preserving bright pixels only in the areas
where bright CoC coincide in both images. The Max(x, y)
function returns the greater (i.e. most bright) of x and y
at every pixel, and thus approximates a boolean union by
preserving bright pixels wherever they exist in either image
(see Figure 9).

The complete filtering workflow for our separable hexagon
and octagon implementations is thus as shown in Figure 10.
Note that we have eliminated a pass from the hexagon imple-
mentation by reusing the results of the first pass to produce
both parallelograms. This optimization can be used any time
two parallelograms share a side in common. Another opti-
mization (not shown for clarity), is that we perform the final
Min(x, y) or Max(x, y) operation as an extra step in the last
filtering pass, rather than make a dedicated pass for it. This
saves the overhead of setting up another pass for such a trivial
operation.

The bokeh effects achieved though this simple technique
can be surprisingly good. For instance, see Figure 1 where
hexagonal and octagonal bokeh are clearly visible. Also see

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

1816 L. McIntosh et al. / Efficiently Simulating Bokeh

Min , =

(a)

Min

⎛
⎜⎜⎜⎜⎝

,

⎞
⎟⎟⎟⎟⎠

=

(b)

Max

⎛
⎜⎜⎜⎜⎝

,

⎞
⎟⎟⎟⎟⎠

=

(c)

Figure 9: The Min(x, y) function approximates a boolean
intersection. We use it to model the effect of hexagonal
(a) and octagonal (b) apertures. The Max(x, y) function
approximates a boolean union. It could be used to model the
effect of a star-shaped aperture (c).

Figure 11 that demonstrates our hexagonal technique on a
full 3D scene, with a wide range of CoC sizes.

Regarding the design of these separable filters for arbi-
trary aperture shapes, we have not been able to discern any
particularly helpful rules that would make the construction
process more formulaic, and this remains a potential area
for future research. We can say that both convex and con-
cave shapes are possible though (see Figure 9). We also
note that the technique seems to lend itself best to poly-
gons with fewer sides (as more sides inevitably require
more parallelograms to make), and to polygons with even
numbers of sides (though odd-sided shapes are certainly
possible). Finally, we note that the artefacts produced by
Max(x, y) (see Figure 13) tend to be less notable in practice
than those of Min(x, y) (see Figure 12), and it may there-
fore be best to construct shapes as boolean unions when
possible.

4.6. Artefacts

Our separable bokeh technique is not without its flaws.
Min(x, y) causes artefacts where an area that was intended
to be discarded (such as the corner of a square in our oc-
tagon shader) in one image, happens to coincide with another
such area in the other image. The result is that seemingly
‘from nowhere’, bright defocused highlights of the wrong

Figure 10: The filtering workflow for our separable hexagon
(a) and octagon (b) implementations.

Figure 11: A hexagonal bokeh effect, produced by our sep-
arable depth of field technique, is visible in the tree canopy
of this 3D HDR scene.

shape appear (see Figure 12). In addition, Min(x, y) gener-
ally causes a small decrease in image intensity (brightness)
in the defocused areas of an image. Max(x, y) causes arte-
facts where two bright defocused highlights should over-
lap in the final image, but do not overlap in either input
image. The result is that the highlights, although appearing

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

L. McIntosh et al. / Efficiently Simulating Bokeh 1817

Figure 12: In this test, two bright points are carefully
placed to expose the bokeh artefacts caused by our usage
of Min(x, y). The effect is more exaggerated in our hexago-
nal implementation (a) than in our octagonal implementation
(b) because of the more pronounced corners on the parallel-
ograms used.

Figure 13: In this test, two bright points are carefully
placed to expose the bokeh artefacts caused by our usage of
Max(x, y). (a) Shows the result of our separable bokeh tech-
nique. For comparison, (b) shows the correct result where
intensities are added in the overlapping areas.

to overlap, do not properly add their intensities in overlap-
ping areas (see Figure 13). In addition, Max(x, y) generally
causes a small increase in image intensity (brightness) in the
defocused areas of an image. Finally, like all gathering depth
of field shaders, our approach naturally suffers from sam-
pling artefacts in image areas with large CoC. Our technique
tends to produce even, higher frequency noise (see Figures 12
and 13) though, which is generally less perceptible to human
viewers. Dynamically adjusting the number of samples used
based on the CoC diameter of each pixel might eliminate
sampling artefacts for large diameters, although remaining
efficient for small ones. Modern GPUs now support the dy-
namic branching necessary to implement this, and this could
be an interesting direction for future improvement.

Our test images have been carefully designed to expose
these artefacts. In practice though, we think these artefacts
are slight enough as to go largely unnoticed in most scenes.
This is especially true given that these artefacts are all absent
from the focused areas of images where the attention of

Table 1: The FPS attained by each shader technique at different
numbers of effective samples. The naive shader fails to compile at
256, 400 and 576 samples, so these measurements could not be
performed.

Effective samples 16 64 144 256 400 576

Separable hexagon 105 80 62 52 46 40
Separable octagon 93 65 51 41 35 30
Naive 106 47 24

viewers will naturally be drawn. See Figure 1(c) for an ex-
ample of the artefacts caused by overlapping parallelogram
corners in practice (look for the small imperfections in the
octagonal bokeh produced by the tightly spaced lights along
the bridge deck).

5. Performance Tests

To determine the relative performance of our separable tech-
nique, we implemented the aforementioned hexagon and oc-
tagon versions of it in High Level Shader Language and inte-
grated them into the Torque Game Engine Advanced (TGEA)
1.8.0 video game engine (see //www.garagegames.com/). In
addition, we implemented the naive non-separable technique
in the same manner. We then proceeded to measure the per-
formance in frames per second (FPS) of each technique at
several different ‘effective sample counts’ (16, 64, 144, 256,
400 and 576). In the case of the naive technique, the number
of effective samples is simply equal to the number of actual
sample operations performed. In the case of our separable
techniques, we take the number of effective samples to be
the number of samples performed per pass squared. This
would be exactly correct in the case of a single parallelo-
gram. In the case of our hexagons and octagons the situation
is less clear because of the combination of multiple paral-
lelograms using the Min(x, y) operator. We feel this offers
a good approximation to the effective number of samples in
our technique however.

A static test scene (of about 8000 polygons) was rendered
at 800 × 800 with no multi-sample anti-aliasing. FPS was
averaged automatically over a 10 s period using the FRAPS
benchmarking tool (see //www.fraps.com/). All tests were
performed on a 2.66GHz Intel Core 2 Duo CPU, with 2GB
RAM and a GeForce 8600 GT 256MB video card, running
Windows 7 (64-bit). Vertex and pixel shaders were com-
piled against Shader Model 3.0 profiles, (vs_3_0 and ps_3_0,
respectively).

5.1. Results and discussion

As expected, our performance tests in TGEA (see Table 1)
reveal that our separable hexagon shader performs the fastest,
followed by our separable octagon shader and finally the
naive shader, across virtually the whole range of effective

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

1818 L. McIntosh et al. / Efficiently Simulating Bokeh

samples. One will note that the naive shader fails to compile
for larger numbers of samples due to the size restrictions of
Shader Model 3.0.

Our performance tests in TGEA demonstrate that our sep-
arable bokeh technique has a clear performance advantage
over the naive approach. This is not surprising, considering
the difference in the number of sample operations performed.
For example, to achieve 144 effective samples, our separa-
ble hexagon shader performs just 36 sample operations per
pixel (12 per pass × 3 passes). Similarly, our octagon shader
performs 48 sample operations per pixel (12 per pass × 4
passes). The naive approach, however, must perform the full
144 sample operations per pixel to achieve a similar quality
and its performance therefore suffers immensely. By lever-
aging the efficiency of separable filters, our approach attains
much better frame rates at similar quality.

6. Conclusion

In this paper, we presented a novel ‘gathering’ depth of field
shader technique for real-time applications. By leveraging
separable filters, our technique can efficiently simulate the
bokeh effects of polygonal apertures like squares, hexagons
and octagons, among others. The approach introduces some
minor bokeh artefacts, but they are confined to the defo-
cused areas of an image, and we feel they would largely go
unnoticed by casual viewers. Performance data from a video
game engine test indicates that our separable bokeh technique
attains much better frame rates than a naive non-separable
approach, at comparable image quality.

6.1. Future work

It would be interesting to compare the performance and im-
age quality of other depth of field techniques that consider
bokeh—specifically point-splatting techniques—to our sepa-
rable bokeh technique. We foresee that perhaps applications
could use point-splatting for better quality on higher end
hardware, with our separable bokeh functioning as a com-
petent fall back technique on lower end hardware. In addi-
tion, it would be interesting to investigate the possibility of
approximating lens effects like chromatic aberration in our
approach.

References

[Dem04] DEMERS J.: Depth of field: A survey of techniques.
In GPU Gems: Programming Techniques, Tips and Tricks
for Real-Time Graphics. R. Fernando (Ed.). Addison-
Wesley Professional, Reading, MA (2004), pp. 375–390.

[Ham07] HAMMON E.: Practical post-process depth of field.
In GPU Gems 3. H. Nguyen (Ed.). Addison-Wesley Pro-
fessional, Reading, MA (2007), pp. 583–605.

[KLO06] KASS M., LEFOHN A., OWENS J.: Interactive depth
of field using simulated diffusion on a GPU. //graph-

ics.pixar.com/library/DepthOfField/paper.pdf. Accessed
1 November 2011.

[KS07] KRAUS M., STRENGERT M.: Depth-of-field rendering
by pyramidal image processing. Computer Graphics Fo-
rum 26, 3 (September 2007), 645–654.

[LES09] LEE S., EISEMANN E., SEIDEL H.: Depth-of-field ren-
dering with multiview synthesis. ACM Transactions on
Graphics 28, 5 (December 2009), 6 pages.

[LES10] LEE S., EISEMANN E., SEIDEL H.: Real-time lens blur
effects and focus control. ACM Transactions on Graphics
29, 4 (July 2010), 7 pages.

[LKC08] LEE S., KIM G. J., CHOI S.: Real-time depth-of-
field rendering using point splatting on per-pixel layers.
Computer Graphics Forum 27, 7 (2008), 1955–1962.

[Mer97] MERKLINGER H. M.: A Technical View of Bokeh.
Photo Techniques (1997). //www.trenholm.org/hmmerk/
ATVB.pdf. Accessed 1 November 2011.

[Mon00] MONACO J.: How to Read a Film: The World of
Movies, Media, Multimedia: Language, History, Theory
(3rd edition). Oxford University Press, New York, USA,
2000.

[PC81] POTMESIL M., CHAKRAVARTY I.: A lens and aperture
camera model for synthetic image generation. In Proceed-
ings of the 8th Annual Conference on Computer Graph-
ics and Interactive Techniques (Dallas, TX, USA, 1981),
ACM, pp. 297–305.

[RTI03] RIGUER G., TATARCHUK N., ISIDORO J.: Real-time
depth of field simulation. In ShaderX2: Shader Pro-
gramming Tips and Tricks with DirectX 9.0. Wordware
Publishing, Inc., Plano, TX, October 2003. //tog.acm.org/
resources/shaderx/Tips_and_Tricks_with_DirectX_9.pdf.
Accessed 1 November 2011.

[Sch04] SCHEUERMANN T.: Advanced Depth of Field, 2004.
//developer.amd.com/media/gpu_assets/Scheuermann_
DepthOfField.pdf. Accessed 1 November 2011.

[WB11] WHITE J., BARRÉ-BRISEBOIS C.: More performance!
five rendering ideas from Battlefield 3 and Need For
Speed: The Run, August 2011. //publications.dice.se/. Ac-
cessed 20 January 2012.

[WZH*10] WU J., ZHENG C., HU X., WANG Y., ZHANG

L.: Realistic rendering of bokeh effect based on optical
aberrations. The Visual Computer 26, 6-8 (April 2010),
555–563.

[ZCP07] ZHOU T., CHEN J. X., PULLEN M.: Accurate depth of
field simulation in real time. Computer Graphics Forum
26, 1 (2007), 15–23.

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

L. McIntosh et al. / Efficiently Simulating Bokeh 1819

Appendix: Code Listing

Listing 1: CoC Map Pixel Shader (HLSL)

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

1820 L. McIntosh et al. / Efficiently Simulating Bokeh

Listing 2: Creating the sample offsets (HLSL)

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

L. McIntosh et al. / Efficiently Simulating Bokeh 1821

Listing 3: Depth of Field Pixel Shader (HLSL)

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

1822 L. McIntosh et al. / Efficiently Simulating Bokeh

Listing 4: Depth of Field Final Pixel Shader (HLSL)

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

