Navigational Search in VR: Do we need to walk?


Do we need full phys­i­cal motions for effec­tive nav­i­ga­tion through Virtual Environments? Recent results sug­gest that trans­la­tions might not be as impor­tant as pre­vi­ously believed, which could enable us to reduce over­all sim­u­la­tion effort and cost

Physical rota­tions and trans­la­tions are the basic con­stituents of nav­i­ga­tion behav­ior, yet there is mixed evi­dence about their rel­a­tive impor­tance for com­plex nav­i­ga­tion in vir­tual real­ity (VR). In the present exper­i­ment, 24 par­tic­i­pants wore head-mounted dis­plays and per­formed nav­i­ga­tional search tasks with rotations/translations con­trolled by phys­i­cal motion or joy­stick. As expected, phys­i­cal walk­ing showed per­for­mance ben­e­fits over joy­stick nav­i­ga­tion. Controlling trans­la­tions via joy­stick and rota­tions via phys­i­cal rota­tions led to better per­for­mance than joy­stick nav­i­ga­tion, and yielded almost com­pa­ra­ble per­for­mance to actual walk­ing in terms of search effi­ciency and time. Walking resulted, how­ever, in increased view­point changes and shorter nav­i­ga­tion paths, sug­gest­ing a rotation/translation trade­off and dif­fer­ent nav­i­ga­tion strate­gies. While pre­vi­ous stud­ies have empha­sized the impor­tance of full phys­i­cal motion via walk­ing (Ruddle & Lessels, 2006, 2009), our data sug­gests that con­sid­er­able nav­i­ga­tion improve­ments can already be gained by allow­ing for full-body rota­tions, with­out the con­sid­er­able cost, space, track­ing, and safety require­ments of free-space walk­ing setups.

Video below: Navigational search par­a­digm for rotations


Nguyen-Vo, T., Riecke, B. E., & Stuerzlinger, W. (2017, April). Investigating the Effect of Simulated Reference Frames on Spatial Orientation in Virtual Reality. Poster pre­sented at the Second International Workshop on Models and Representations in Spatial Cognition, Tübingen, Germany. (Download)
Hashemian, A. M., Kitson, A., Nguyen-Vo, T., Benko, H., Stuerzlinger, W., & Riecke, B. E. (2018). Investigating a Sparse Peripheral Display in a Head-Mounted Display for VR Locomotion (p. 2-page extended abstract and poster). Presented at the IEEE Virtual Reality 2018, Reutlingen, Germany: IEEE. (Download)
Nguyen-Vo, T., Riecke, B. E., & Stuerzlinger, W. (2018). Simulated Reference Frame: A Cost-Effective Solution to Improve Spatial Orientation in VR (pp. 1–8). Presented at the IEEE Virtual Reality 2018, Reutlingen, Germany: IEEE. (Download)
Nguyen-Vo, T., Riecke, B. E., Stuerzlinger, W., Pham, D.-M., & Kruijff, E. (2018). Do We Need Actual Walking in VR? Leaning with Actual Rotation Might Suffice for Efficient Locomotion. Poster pre­sented at the Spatial Cognition 2018. (Download)
Nguyen-Vo, T., Riecke, B. E., & Stuerzlinger, W. (2017). Moving in a Box: Improving Spatial Orientation in Virtual Reality using Simulated Reference Frames (pp. 207–208). Presented at the IEEE Symposium on 3D User Interfaces 3DUI. (Download)
Riecke, B., Bodenheimer, B., McNamara, T., Williams, B., Peng, P., & Feuereissen, D. (2010). Do We Need to Walk for Effective Virtual Reality Navigation? Physical Rotations Alone May Suffice. In C. Hölscher, T. Shipley, M. Olivetti Belardinelli, J. Bateman, & N. Newcombe (Eds.), Spatial Cognition VII (Vol. 6222, pp. 234–247). Springer Berlin / Heidelberg.