John Rieser

profile

Position:

Professor

Contact:

J.Rieser at vanderbilt.edu
http://www.vanderbilt.edu/psychological_sciences/bio/john-rieser

Affiliations:

Vanderbilt University, Psychology and Human Development; Vanderbilt Kennedy Center for Research on Human Development

Biography

Projects

Embodied Self-Motion Illusions in VR

How can we provide humans with a believable sensation of being in and moving through computer-generated environments (like VR, computer games, or movies) without the need for costly and cumbersome motion platforms or large free-space walking areas? That is, how can we "cheat intelligently" by providing a compelling, embodied self-motion illusion ("vection") without the need for full physical mo...


Navigational Search in VR: Do we need to walk?

Do we need full physical motions for effective navigation through Virtual Environments? Recent results suggest that translations might not be as important as previously believed, which could enable us to reduce overall simulation effort and cost Physical rotations and translations are the basic constituents of navigation behavior, yet there is mixed evidence about their relative importance for co...



Publications

Riecke, B. E., Feuereissen, D., & Rieser, J. J. (2009). Auditory self-motion simulation is facilitated by haptic and vibrational cues suggesting the possibility of actual motion. ACM Transactions on Applied Perception (TAP), 6, 20:1-20:22. https://doi.org/10.1145/1577755.1577763
Riecke, B. E., Feuereissen, D., Rieser, J. J., & McNamara, T. P. (2015). More than a Cool Illusion? Functional Significance of Self-Motion Illusion (Circular Vection) for Perspective Switches. Frontiers in Psychology, 6(1174), 1–13. https://doi.org/10.3389/fpsyg.2015.01174
Riecke, B. E., Feuereissen, D., Rieser, J. J., & McNamara, T. P. (2012). Self-Motion Illusions (Vection) in VR – Are They Good For Anything? IEEE Virtual Reality 2012, 35–38. https://doi.org/10.1109/VR.2012.6180875
Riecke, B. E., Feuereissen, D., & Rieser, J. J. (2008). Auditory self-motion illusions (“circular vection”) can be facilitated by vibrations and the potential for actual motion. Proceedings of the 5th Symposium on Applied Perception in Graphics and Visualization, 147–154. https://doi.org/10.1145/1394281.1394309
Riecke, B. E., Feuereissen, D., & Rieser, J. J. (2010). Spatialized sound influences biomechanical self-motion illusion (“vection”). Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization, 158–158. https://doi.org/10.1145/1836248.1836280
Riecke, B. E., Feuereissen, D., Rieser, J. J., & McNamara, T. P. (2011). Spatialized sound enhances biomechanically-induced self-motion illusion (vection). Proceedings of the 2011 Annual Conference on Human Factors in Computing Systems, 2799–2802. https://doi.org/10.1145/1978942.1979356
Riecke, B. E., Feuereissen, D., & Rieser, J. J. (2009). Rotating sound fields can facilitate biomechanical self-motion illusion (“circular vection”). Journal of Vision, 9(8), 714–714. https://doi.org/10.1167/9.8.714
Riecke, B. E., Feuereissen, D., Rieser, J. J., & McNamara, T. P. (2014). Can self-motion illusions (circular vection) facilitate spatial updating? [Poster]. Spatial Cognition 2014 Conference, Bremen, Germany. http://conference.spatial-cognition.de/SC2014/
Contribution and interaction of auditory and biomechanical cues for self-motion illusions (“circular vection”). (2008). [Poster]. CyberWalk workshop, Tübingen, Germany.